Merge branch 'master' of c:/ph/keepass2android
This commit is contained in:
@@ -1,13 +0,0 @@
|
||||
brg_endian.h
|
||||
brg_types.h
|
||||
hmac.c
|
||||
hmac.h
|
||||
pwd2key.c
|
||||
pwd2key.h
|
||||
sha1b.c
|
||||
sha1.c
|
||||
sha1.h
|
||||
sha2b.c
|
||||
sha2.c
|
||||
sha2.h
|
||||
shasum.c
|
||||
|
||||
136
src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_endian.h
Normal file
136
src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_endian.h
Normal file
@@ -0,0 +1,136 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 20/10/2006
|
||||
*/
|
||||
|
||||
#ifndef BRG_ENDIAN_H
|
||||
#define BRG_ENDIAN_H
|
||||
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
|
||||
/* Include files where endian defines and byteswap functions may reside */
|
||||
#if defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
|
||||
# include <sys/endian.h>
|
||||
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
|
||||
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
|
||||
# include <machine/endian.h>
|
||||
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
|
||||
# if !defined( __MINGW32__ )
|
||||
# include <endian.h>
|
||||
# if !defined( __BEOS__ )
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Now attempt to set the define for platform byte order using any */
|
||||
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */
|
||||
/* seem to encompass most endian symbol definitions */
|
||||
|
||||
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
|
||||
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
|
||||
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( _BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( _LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
|
||||
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
/* if the platform byte order could not be determined, then try to */
|
||||
/* set this define using common machine defines */
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
|
||||
defined( THINK_C ) || defined( __VMCMS__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
184
src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_types.h
Normal file
184
src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_types.h
Normal file
@@ -0,0 +1,184 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 09/09/2006
|
||||
|
||||
The unsigned integer types defined here are of the form uint_<nn>t where
|
||||
<nn> is the length of the type; for example, the unsigned 32-bit type is
|
||||
'uint_32t'. These are NOT the same as the 'C99 integer types' that are
|
||||
defined in the inttypes.h and stdint.h headers since attempts to use these
|
||||
types have shown that support for them is still highly variable. However,
|
||||
since the latter are of the form uint<nn>_t, a regular expression search
|
||||
and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
|
||||
can be used to convert the types used here to the C99 standard types.
|
||||
*/
|
||||
|
||||
#ifndef BRG_TYPES_H
|
||||
#define BRG_TYPES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#ifndef BRG_UI8
|
||||
# define BRG_UI8
|
||||
# if UCHAR_MAX == 255u
|
||||
typedef unsigned char uint_8t;
|
||||
# else
|
||||
# error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI16
|
||||
# define BRG_UI16
|
||||
# if USHRT_MAX == 65535u
|
||||
typedef unsigned short uint_16t;
|
||||
# else
|
||||
# error Please define uint_16t as a 16-bit unsigned short type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI32
|
||||
# define BRG_UI32
|
||||
# if UINT_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##u
|
||||
typedef unsigned int uint_32t;
|
||||
# elif ULONG_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##ul
|
||||
typedef unsigned long uint_32t;
|
||||
# elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines do not provide
|
||||
# else
|
||||
# error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI64
|
||||
# if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( __sun ) && defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
|
||||
# if UINT_MAX == 18446744073709551615u
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##u
|
||||
typedef unsigned int uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
|
||||
# if ULONG_MAX == 18446744073709551615ul
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ul
|
||||
typedef unsigned long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
|
||||
# if ULLONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
|
||||
# if ULONG_LONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( NEED_UINT_64T ) && !defined( BRG_UI64 )
|
||||
# error Please define uint_64t as an unsigned 64 bit type in brg_types.h
|
||||
#endif
|
||||
|
||||
#ifndef RETURN_VALUES
|
||||
# define RETURN_VALUES
|
||||
# if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllexport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllexport__ ) void
|
||||
# define INT_RETURN __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllimport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllimport__ ) void
|
||||
# define INT_RETURN __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( __WATCOMC__ )
|
||||
# define VOID_RETURN void __cdecl
|
||||
# define INT_RETURN int __cdecl
|
||||
# else
|
||||
# define VOID_RETURN void
|
||||
# define INT_RETURN int
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* These defines are used to declare buffers in a way that allows
|
||||
faster operations on longer variables to be used. In all these
|
||||
defines 'size' must be a power of 2 and >= 8
|
||||
|
||||
dec_unit_type(size,x) declares a variable 'x' of length
|
||||
'size' bits
|
||||
|
||||
dec_bufr_type(size,bsize,x) declares a buffer 'x' of length 'bsize'
|
||||
bytes defined as an array of variables
|
||||
each of 'size' bits (bsize must be a
|
||||
multiple of size / 8)
|
||||
|
||||
ptr_cast(x,size) casts a pointer to a pointer to a
|
||||
varaiable of length 'size' bits
|
||||
*/
|
||||
|
||||
#define ui_type(size) uint_##size##t
|
||||
#define dec_unit_type(size,x) typedef ui_type(size) x
|
||||
#define dec_bufr_type(size,bsize,x) typedef ui_type(size) x[bsize / (size >> 3)]
|
||||
#define ptr_cast(x,size) ((ui_type(size)*)(x))
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
144
src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.c
Normal file
144
src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.c
Normal file
@@ -0,0 +1,144 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 26/08/2003
|
||||
|
||||
This is an implementation of HMAC, the FIPS standard keyed hash function
|
||||
*/
|
||||
|
||||
#include "hmac.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* initialise the HMAC context to zero */
|
||||
void hmac_sha_begin(hmac_ctx cx[1])
|
||||
{
|
||||
memset(cx, 0, sizeof(hmac_ctx));
|
||||
}
|
||||
|
||||
/* input the HMAC key (can be called multiple times) */
|
||||
int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1])
|
||||
{
|
||||
if(cx->klen == HMAC_IN_DATA) /* error if further key input */
|
||||
return HMAC_BAD_MODE; /* is attempted in data mode */
|
||||
|
||||
if(cx->klen + key_len > HASH_INPUT_SIZE) /* if the key has to be hashed */
|
||||
{
|
||||
if(cx->klen <= HASH_INPUT_SIZE) /* if the hash has not yet been */
|
||||
{ /* started, initialise it and */
|
||||
sha_begin(cx->ctx); /* hash stored key characters */
|
||||
sha_hash(cx->key, cx->klen, cx->ctx);
|
||||
}
|
||||
|
||||
sha_hash(key, key_len, cx->ctx); /* hash long key data into hash */
|
||||
}
|
||||
else /* otherwise store key data */
|
||||
memcpy(cx->key + cx->klen, key, key_len);
|
||||
|
||||
cx->klen += key_len; /* update the key length count */
|
||||
return HMAC_OK;
|
||||
}
|
||||
|
||||
/* input the HMAC data (can be called multiple times) - */
|
||||
/* note that this call terminates the key input phase */
|
||||
void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1])
|
||||
{ unsigned int i;
|
||||
|
||||
if(cx->klen != HMAC_IN_DATA) /* if not yet in data phase */
|
||||
{
|
||||
if(cx->klen > HASH_INPUT_SIZE) /* if key is being hashed */
|
||||
{ /* complete the hash and */
|
||||
sha_end(cx->key, cx->ctx); /* store the result as the */
|
||||
cx->klen = HASH_OUTPUT_SIZE; /* key and set new length */
|
||||
}
|
||||
|
||||
/* pad the key if necessary */
|
||||
memset(cx->key + cx->klen, 0, HASH_INPUT_SIZE - cx->klen);
|
||||
|
||||
/* xor ipad into key value */
|
||||
for(i = 0; i < (HASH_INPUT_SIZE >> 2); ++i)
|
||||
((uint_32t*)cx->key)[i] ^= 0x36363636;
|
||||
|
||||
/* and start hash operation */
|
||||
sha_begin(cx->ctx);
|
||||
sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx);
|
||||
|
||||
/* mark as now in data mode */
|
||||
cx->klen = HMAC_IN_DATA;
|
||||
}
|
||||
|
||||
/* hash the data (if any) */
|
||||
if(data_len)
|
||||
sha_hash(data, data_len, cx->ctx);
|
||||
}
|
||||
|
||||
/* compute and output the MAC value */
|
||||
void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1])
|
||||
{ unsigned char dig[HASH_OUTPUT_SIZE];
|
||||
unsigned int i;
|
||||
|
||||
/* if no data has been entered perform a null data phase */
|
||||
if(cx->klen != HMAC_IN_DATA)
|
||||
hmac_sha_data((const unsigned char*)0, 0, cx);
|
||||
|
||||
sha_end(dig, cx->ctx); /* complete the inner hash */
|
||||
|
||||
/* set outer key value using opad and removing ipad */
|
||||
for(i = 0; i < (HASH_INPUT_SIZE >> 2); ++i)
|
||||
((uint_32t*)cx->key)[i] ^= 0x36363636 ^ 0x5c5c5c5c;
|
||||
|
||||
/* perform the outer hash operation */
|
||||
sha_begin(cx->ctx);
|
||||
sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx);
|
||||
sha_hash(dig, HASH_OUTPUT_SIZE, cx->ctx);
|
||||
sha_end(dig, cx->ctx);
|
||||
|
||||
/* output the hash value */
|
||||
for(i = 0; i < mac_len; ++i)
|
||||
mac[i] = dig[i];
|
||||
}
|
||||
|
||||
/* 'do it all in one go' subroutine */
|
||||
void hmac_sha(const unsigned char key[], unsigned long key_len,
|
||||
const unsigned char data[], unsigned long data_len,
|
||||
unsigned char mac[], unsigned long mac_len)
|
||||
{ hmac_ctx cx[1];
|
||||
|
||||
hmac_sha_begin(cx);
|
||||
hmac_sha_key(key, key_len, cx);
|
||||
hmac_sha_data(data, data_len, cx);
|
||||
hmac_sha_end(mac, mac_len, cx);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
101
src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.h
Normal file
101
src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.h
Normal file
@@ -0,0 +1,101 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 26/08/2003
|
||||
|
||||
This is an implementation of HMAC, the FIPS standard keyed hash function
|
||||
*/
|
||||
|
||||
#ifndef _HMAC_H
|
||||
#define _HMAC_H
|
||||
|
||||
#include <memory.h>
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if !defined(USE_SHA1) && !defined(USE_SHA256)
|
||||
#error define USE_SHA1 or USE_SHA256 to set the HMAC hash algorithm
|
||||
#endif
|
||||
|
||||
#ifdef USE_SHA1
|
||||
|
||||
#include "sha1.h"
|
||||
|
||||
#define HASH_INPUT_SIZE SHA1_BLOCK_SIZE
|
||||
#define HASH_OUTPUT_SIZE SHA1_DIGEST_SIZE
|
||||
#define sha_ctx sha1_ctx
|
||||
#define sha_begin sha1_begin
|
||||
#define sha_hash sha1_hash
|
||||
#define sha_end sha1_end
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_SHA256
|
||||
|
||||
#include "sha2.h"
|
||||
|
||||
#define HASH_INPUT_SIZE SHA256_BLOCK_SIZE
|
||||
#define HASH_OUTPUT_SIZE SHA256_DIGEST_SIZE
|
||||
#define sha_ctx sha256_ctx
|
||||
#define sha_begin sha256_begin
|
||||
#define sha_hash sha256_hash
|
||||
#define sha_end sha256_end
|
||||
|
||||
#endif
|
||||
|
||||
#define HMAC_OK 0
|
||||
#define HMAC_BAD_MODE -1
|
||||
#define HMAC_IN_DATA 0xffffffff
|
||||
|
||||
typedef struct
|
||||
{ unsigned char key[HASH_INPUT_SIZE];
|
||||
sha_ctx ctx[1];
|
||||
unsigned long klen;
|
||||
} hmac_ctx;
|
||||
|
||||
void hmac_sha_begin(hmac_ctx cx[1]);
|
||||
|
||||
int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1]);
|
||||
|
||||
void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1]);
|
||||
|
||||
void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1]);
|
||||
|
||||
void hmac_sha(const unsigned char key[], unsigned long key_len,
|
||||
const unsigned char data[], unsigned long data_len,
|
||||
unsigned char mac[], unsigned long mac_len);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
193
src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.c
Normal file
193
src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.c
Normal file
@@ -0,0 +1,193 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 26/08/2003
|
||||
|
||||
This is an implementation of RFC2898, which specifies key derivation from
|
||||
a password and a salt value.
|
||||
*/
|
||||
|
||||
#include <memory.h>
|
||||
#include "hmac.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
void derive_key(const unsigned char pwd[], /* the PASSWORD */
|
||||
unsigned int pwd_len, /* and its length */
|
||||
const unsigned char salt[], /* the SALT and its */
|
||||
unsigned int salt_len, /* length */
|
||||
unsigned int iter, /* the number of iterations */
|
||||
unsigned char key[], /* space for the output key */
|
||||
unsigned int key_len)/* and its required length */
|
||||
{
|
||||
unsigned int i, j, k, n_blk;
|
||||
unsigned char uu[HASH_OUTPUT_SIZE], ux[HASH_OUTPUT_SIZE];
|
||||
hmac_ctx c1[1], c2[1], c3[1];
|
||||
|
||||
/* set HMAC context (c1) for password */
|
||||
hmac_sha_begin(c1);
|
||||
hmac_sha_key(pwd, pwd_len, c1);
|
||||
|
||||
/* set HMAC context (c2) for password and salt */
|
||||
memcpy(c2, c1, sizeof(hmac_ctx));
|
||||
hmac_sha_data(salt, salt_len, c2);
|
||||
|
||||
/* find the number of SHA blocks in the key */
|
||||
n_blk = 1 + (key_len - 1) / HASH_OUTPUT_SIZE;
|
||||
|
||||
for(i = 0; i < n_blk; ++i) /* for each block in key */
|
||||
{
|
||||
/* ux[] holds the running xor value */
|
||||
memset(ux, 0, HASH_OUTPUT_SIZE);
|
||||
|
||||
/* set HMAC context (c3) for password and salt */
|
||||
memcpy(c3, c2, sizeof(hmac_ctx));
|
||||
|
||||
/* enter additional data for 1st block into uu */
|
||||
uu[0] = (unsigned char)((i + 1) >> 24);
|
||||
uu[1] = (unsigned char)((i + 1) >> 16);
|
||||
uu[2] = (unsigned char)((i + 1) >> 8);
|
||||
uu[3] = (unsigned char)(i + 1);
|
||||
|
||||
/* this is the key mixing iteration */
|
||||
for(j = 0, k = 4; j < iter; ++j)
|
||||
{
|
||||
/* add previous round data to HMAC */
|
||||
hmac_sha_data(uu, k, c3);
|
||||
|
||||
/* obtain HMAC for uu[] */
|
||||
hmac_sha_end(uu, HASH_OUTPUT_SIZE, c3);
|
||||
|
||||
/* xor into the running xor block */
|
||||
for(k = 0; k < HASH_OUTPUT_SIZE; ++k)
|
||||
ux[k] ^= uu[k];
|
||||
|
||||
/* set HMAC context (c3) for password */
|
||||
memcpy(c3, c1, sizeof(hmac_ctx));
|
||||
}
|
||||
|
||||
/* compile key blocks into the key output */
|
||||
j = 0; k = i * HASH_OUTPUT_SIZE;
|
||||
while(j < HASH_OUTPUT_SIZE && k < key_len)
|
||||
key[k++] = ux[j++];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef TEST
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
struct
|
||||
{ unsigned int pwd_len;
|
||||
unsigned int salt_len;
|
||||
unsigned int it_count;
|
||||
unsigned char *pwd;
|
||||
unsigned char salt[32];
|
||||
unsigned char key[32];
|
||||
} tests[] =
|
||||
{
|
||||
{ 8, 4, 5, (unsigned char*)"password",
|
||||
{
|
||||
0x12, 0x34, 0x56, 0x78
|
||||
},
|
||||
{
|
||||
0x5c, 0x75, 0xce, 0xf0, 0x1a, 0x96, 0x0d, 0xf7,
|
||||
0x4c, 0xb6, 0xb4, 0x9b, 0x9e, 0x38, 0xe6, 0xb5
|
||||
}
|
||||
},
|
||||
{ 8, 8, 5, (unsigned char*)"password",
|
||||
{
|
||||
0x12, 0x34, 0x56, 0x78, 0x78, 0x56, 0x34, 0x12
|
||||
},
|
||||
{
|
||||
0xd1, 0xda, 0xa7, 0x86, 0x15, 0xf2, 0x87, 0xe6,
|
||||
0xa1, 0xc8, 0xb1, 0x20, 0xd7, 0x06, 0x2a, 0x49
|
||||
}
|
||||
},
|
||||
{ 8, 21, 1, (unsigned char*)"password",
|
||||
{
|
||||
"ATHENA.MIT.EDUraeburn"
|
||||
},
|
||||
{
|
||||
0xcd, 0xed, 0xb5, 0x28, 0x1b, 0xb2, 0xf8, 0x01,
|
||||
0x56, 0x5a, 0x11, 0x22, 0xb2, 0x56, 0x35, 0x15
|
||||
}
|
||||
},
|
||||
{ 8, 21, 2, (unsigned char*)"password",
|
||||
{
|
||||
"ATHENA.MIT.EDUraeburn"
|
||||
},
|
||||
{
|
||||
0x01, 0xdb, 0xee, 0x7f, 0x4a, 0x9e, 0x24, 0x3e,
|
||||
0x98, 0x8b, 0x62, 0xc7, 0x3c, 0xda, 0x93, 0x5d
|
||||
}
|
||||
},
|
||||
{ 8, 21, 1200, (unsigned char*)"password",
|
||||
{
|
||||
"ATHENA.MIT.EDUraeburn"
|
||||
},
|
||||
{
|
||||
0x5c, 0x08, 0xeb, 0x61, 0xfd, 0xf7, 0x1e, 0x4e,
|
||||
0x4e, 0xc3, 0xcf, 0x6b, 0xa1, 0xf5, 0x51, 0x2b
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
int main()
|
||||
{ unsigned int i, j, key_len = 256;
|
||||
unsigned char key[256];
|
||||
|
||||
printf("\nTest of RFC2898 Password Based Key Derivation");
|
||||
for(i = 0; i < 5; ++i)
|
||||
{
|
||||
derive_key(tests[i].pwd, tests[i].pwd_len, tests[i].salt,
|
||||
tests[i].salt_len, tests[i].it_count, key, key_len);
|
||||
|
||||
printf("\ntest %i: ", i + 1);
|
||||
printf("key %s", memcmp(tests[i].key, key, 16) ? "is bad" : "is good");
|
||||
for(j = 0; j < key_len && j < 64; j += 4)
|
||||
{
|
||||
if(j % 16 == 0)
|
||||
printf("\n");
|
||||
printf("0x%02x%02x%02x%02x ", key[j], key[j + 1], key[j + 2], key[j + 3]);
|
||||
}
|
||||
printf(j < key_len ? " ... \n" : "\n");
|
||||
}
|
||||
printf("\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
57
src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.h
Normal file
57
src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.h
Normal file
@@ -0,0 +1,57 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 26/08/2003
|
||||
|
||||
This is an implementation of RFC2898, which specifies key derivation from
|
||||
a password and a salt value.
|
||||
*/
|
||||
|
||||
#ifndef PWD2KEY_H
|
||||
#define PWD2KEY_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
void derive_key(
|
||||
const unsigned char pwd[], /* the PASSWORD, and */
|
||||
unsigned int pwd_len, /* its length */
|
||||
const unsigned char salt[], /* the SALT and its */
|
||||
unsigned int salt_len, /* length */
|
||||
unsigned int iter, /* the number of iterations */
|
||||
unsigned char key[], /* space for the output key */
|
||||
unsigned int key_len); /* and its required length */
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
258
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.c
Normal file
258
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.c
Normal file
@@ -0,0 +1,258 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
|
||||
This is a byte oriented version of SHA1 that operates on arrays of bytes
|
||||
stored in memory.
|
||||
*/
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
|
||||
#include "sha1.h"
|
||||
#include "brg_endian.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#if 0 && defined(_MSC_VER)
|
||||
#define rotl32 _lrotl
|
||||
#define rotr32 _lrotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Discovered by Rich Schroeppel and Colin Plumb */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA1 context. Note */
|
||||
/* that this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream will go in */
|
||||
/* this buffer to the high end of 32-bit words on BOTH big */
|
||||
/* and little endian systems */
|
||||
|
||||
#ifdef ARRAY
|
||||
#define q(v,n) v[n]
|
||||
#else
|
||||
#define q(v,n) v##n
|
||||
#endif
|
||||
|
||||
#define one_cycle(v,a,b,c,d,e,f,k,h) \
|
||||
q(v,e) += rotr32(q(v,a),27) + \
|
||||
f(q(v,b),q(v,c),q(v,d)) + k + h; \
|
||||
q(v,b) = rotr32(q(v,b), 2)
|
||||
|
||||
#define five_cycle(v,f,k,i) \
|
||||
one_cycle(v, 0,1,2,3,4, f,k,hf(i )); \
|
||||
one_cycle(v, 4,0,1,2,3, f,k,hf(i+1)); \
|
||||
one_cycle(v, 3,4,0,1,2, f,k,hf(i+2)); \
|
||||
one_cycle(v, 2,3,4,0,1, f,k,hf(i+3)); \
|
||||
one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
|
||||
|
||||
VOID_RETURN sha1_compile(sha1_ctx ctx[1])
|
||||
{ uint_32t *w = ctx->wbuf;
|
||||
|
||||
#ifdef ARRAY
|
||||
uint_32t v[5];
|
||||
memcpy(v, ctx->hash, 5 * sizeof(uint_32t));
|
||||
#else
|
||||
uint_32t v0, v1, v2, v3, v4;
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4];
|
||||
#endif
|
||||
|
||||
#define hf(i) w[i]
|
||||
|
||||
five_cycle(v, ch, 0x5a827999, 0);
|
||||
five_cycle(v, ch, 0x5a827999, 5);
|
||||
five_cycle(v, ch, 0x5a827999, 10);
|
||||
one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
|
||||
|
||||
#undef hf
|
||||
#define hf(i) (w[(i) & 15] = rotl32( \
|
||||
w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
|
||||
^ w[((i) + 2) & 15] ^ w[(i) & 15], 1))
|
||||
|
||||
one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
|
||||
one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
|
||||
one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
|
||||
one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
|
||||
|
||||
five_cycle(v, parity, 0x6ed9eba1, 20);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 25);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 30);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 35);
|
||||
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 40);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 45);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 50);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 55);
|
||||
|
||||
five_cycle(v, parity, 0xca62c1d6, 60);
|
||||
five_cycle(v, parity, 0xca62c1d6, 65);
|
||||
five_cycle(v, parity, 0xca62c1d6, 70);
|
||||
five_cycle(v, parity, 0xca62c1d6, 75);
|
||||
|
||||
#ifdef ARRAY
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4];
|
||||
#else
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4;
|
||||
#endif
|
||||
}
|
||||
|
||||
VOID_RETURN sha1_begin(sha1_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
ctx->hash[0] = 0x67452301;
|
||||
ctx->hash[1] = 0xefcdab89;
|
||||
ctx->hash[2] = 0x98badcfe;
|
||||
ctx->hash[3] = 0x10325476;
|
||||
ctx->hash[4] = 0xc3d2e1f0;
|
||||
}
|
||||
|
||||
/* SHA1 hash data in an array of bytes into hash buffer and */
|
||||
/* call the hash_compile function as required. */
|
||||
|
||||
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA1_MASK),
|
||||
space = SHA1_BLOCK_SIZE - pos;
|
||||
const unsigned char *sp = data;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
while(len >= space) /* tranfer whole blocks if possible */
|
||||
{
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
|
||||
sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0;
|
||||
bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2);
|
||||
sha1_compile(ctx);
|
||||
}
|
||||
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
|
||||
}
|
||||
|
||||
/* SHA1 final padding and digest calculation */
|
||||
|
||||
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
|
||||
{ uint_32t i = (uint_32t)(ctx->count[0] & SHA1_MASK);
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 3) >> 2);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
|
||||
ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space, pad and empty the buffer */
|
||||
if(i > SHA1_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha1_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
|
||||
ctx->wbuf[15] = ctx->count[0] << 3;
|
||||
sha1_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
|
||||
}
|
||||
|
||||
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha1_ctx cx[1];
|
||||
|
||||
sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
73
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.h
Normal file
73
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.h
Normal file
@@ -0,0 +1,73 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
*/
|
||||
|
||||
#ifndef _SHA1_H
|
||||
#define _SHA1_H
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "brg_types.h"
|
||||
|
||||
#define SHA1_BLOCK_SIZE 64
|
||||
#define SHA1_DIGEST_SIZE 20
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* type to hold the SHA256 context */
|
||||
|
||||
typedef struct
|
||||
{ uint_32t count[2];
|
||||
uint_32t hash[5];
|
||||
uint_32t wbuf[16];
|
||||
} sha1_ctx;
|
||||
|
||||
/* Note that these prototypes are the same for both bit and */
|
||||
/* byte oriented implementations. However the length fields */
|
||||
/* are in bytes or bits as appropriate for the version used */
|
||||
/* and bit sequences are input as arrays of bytes in which */
|
||||
/* bit sequences run from the most to the least significant */
|
||||
/* end of each byte */
|
||||
|
||||
VOID_RETURN sha1_compile(sha1_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha1_begin(sha1_ctx ctx[1]);
|
||||
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]);
|
||||
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]);
|
||||
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
287
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1b.c
Normal file
287
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1b.c
Normal file
@@ -0,0 +1,287 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
|
||||
This is a bit oriented version of SHA1 that operates on arrays of bytes
|
||||
stored in memory.
|
||||
*/
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
|
||||
#include "sha1.h"
|
||||
#include "brg_endian.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#if 0 && defined(_MSC_VER)
|
||||
#define rotl32 _lrotl
|
||||
#define rotr32 _lrotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) (rotr32((x), 24) & 0x00ff00ff | rotr32((x), 8) & 0xff00ff00)
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Discovered by Rich Schroeppel and Colin Plumb */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA1 context. Note */
|
||||
/* that this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream in this buffer */
|
||||
/* will go to the high end of 32-bit words on BOTH big and */
|
||||
/* little endian systems */
|
||||
|
||||
#ifdef ARRAY
|
||||
#define q(n) v[n]
|
||||
#else
|
||||
#define q(n) v##n
|
||||
#endif
|
||||
|
||||
#define one_cycle(a,b,c,d,e,f,k,h) \
|
||||
q(e) += rotr32(q(a),27) + f(q(b),q(c),q(d)) + k + h;\
|
||||
q(b) = rotr32(q(b), 2)
|
||||
|
||||
#define five_cycle(f,k,i) \
|
||||
one_cycle(0,1,2,3,4, f,k,hf(i )); \
|
||||
one_cycle(4,0,1,2,3, f,k,hf(i+1)); \
|
||||
one_cycle(3,4,0,1,2, f,k,hf(i+2)); \
|
||||
one_cycle(2,3,4,0,1, f,k,hf(i+3)); \
|
||||
one_cycle(1,2,3,4,0, f,k,hf(i+4))
|
||||
|
||||
VOID_RETURN sha1_compile(sha1_ctx ctx[1])
|
||||
{ uint_32t *w = ctx->wbuf;
|
||||
|
||||
#ifdef ARRAY
|
||||
uint_32t v[5];
|
||||
memcpy(v, ctx->hash, 5 * sizeof(uint_32t));
|
||||
#else
|
||||
uint_32t v0, v1, v2, v3, v4;
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4];
|
||||
#endif
|
||||
|
||||
#define hf(i) w[i]
|
||||
|
||||
five_cycle(ch, 0x5a827999, 0);
|
||||
five_cycle(ch, 0x5a827999, 5);
|
||||
five_cycle(ch, 0x5a827999, 10);
|
||||
one_cycle(0,1,2,3,4, ch, 0x5a827999, hf(15)); \
|
||||
|
||||
#undef hf
|
||||
#define hf(i) \
|
||||
(w[(i) & 15] = rotl32(w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
|
||||
^ w[((i) + 2) & 15] ^ w[(i) & 15], 1))
|
||||
|
||||
one_cycle(4,0,1,2,3, ch, 0x5a827999, hf(16));
|
||||
one_cycle(3,4,0,1,2, ch, 0x5a827999, hf(17));
|
||||
one_cycle(2,3,4,0,1, ch, 0x5a827999, hf(18));
|
||||
one_cycle(1,2,3,4,0, ch, 0x5a827999, hf(19));
|
||||
|
||||
five_cycle(parity, 0x6ed9eba1, 20);
|
||||
five_cycle(parity, 0x6ed9eba1, 25);
|
||||
five_cycle(parity, 0x6ed9eba1, 30);
|
||||
five_cycle(parity, 0x6ed9eba1, 35);
|
||||
|
||||
five_cycle(maj, 0x8f1bbcdc, 40);
|
||||
five_cycle(maj, 0x8f1bbcdc, 45);
|
||||
five_cycle(maj, 0x8f1bbcdc, 50);
|
||||
five_cycle(maj, 0x8f1bbcdc, 55);
|
||||
|
||||
five_cycle(parity, 0xca62c1d6, 60);
|
||||
five_cycle(parity, 0xca62c1d6, 65);
|
||||
five_cycle(parity, 0xca62c1d6, 70);
|
||||
five_cycle(parity, 0xca62c1d6, 75);
|
||||
|
||||
#ifdef ARRAY
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4];
|
||||
#else
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4;
|
||||
#endif
|
||||
}
|
||||
|
||||
VOID_RETURN sha1_begin(sha1_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
ctx->hash[0] = 0x67452301;
|
||||
ctx->hash[1] = 0xefcdab89;
|
||||
ctx->hash[2] = 0x98badcfe;
|
||||
ctx->hash[3] = 0x10325476;
|
||||
ctx->hash[4] = 0xc3d2e1f0;
|
||||
}
|
||||
|
||||
/* SHA1 hash data in an array of bytes into hash buffer and */
|
||||
/* call the hash_compile function as required. */
|
||||
|
||||
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)((ctx->count[0] >> 3) & SHA1_MASK),
|
||||
ofs = (ctx->count[0] & 7);
|
||||
const unsigned char *sp = data;
|
||||
unsigned char *w = (unsigned char*)ctx->wbuf;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
if(ofs) /* if not on a byte boundary */
|
||||
{
|
||||
if(ofs + len < 8) /* if no added bytes are needed */
|
||||
{
|
||||
w[pos] |= (*sp >> ofs);
|
||||
}
|
||||
else /* otherwise and add bytes */
|
||||
{ unsigned char part = w[pos];
|
||||
|
||||
while((int)(ofs + (len -= 8)) >= 0)
|
||||
{
|
||||
w[pos++] = part | (*sp >> ofs);
|
||||
part = *sp++ << (8 - ofs);
|
||||
if(pos == SHA1_BLOCK_SIZE)
|
||||
{
|
||||
bsw_32(w, SHA1_BLOCK_SIZE >> 2);
|
||||
sha1_compile(ctx); pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
w[pos] = part;
|
||||
}
|
||||
}
|
||||
else /* data is byte aligned */
|
||||
{ uint_32t space = SHA1_BLOCK_SIZE - pos;
|
||||
|
||||
while((int)(len - 8 * space) >= 0)
|
||||
{
|
||||
len -= 8 * space;
|
||||
memcpy(w + pos, sp, space);
|
||||
sp += space;
|
||||
space = SHA1_BLOCK_SIZE;
|
||||
bsw_32(w, SHA1_BLOCK_SIZE >> 2);
|
||||
sha1_compile(ctx); pos = 0;
|
||||
}
|
||||
memcpy(w + pos, sp, (len + 7) >> 3);
|
||||
}
|
||||
}
|
||||
|
||||
/* SHA1 final padding and digest calculation */
|
||||
|
||||
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
|
||||
{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA1_MASK), m1;
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 4) >> 2);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
||||
ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3));
|
||||
ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3));
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space, pad and empty the buffer */
|
||||
if(i > SHA1_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha1_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = ctx->count[1];
|
||||
ctx->wbuf[15] = ctx->count[0];
|
||||
sha1_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
|
||||
}
|
||||
|
||||
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha1_ctx cx[1];
|
||||
|
||||
sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
772
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.c
Normal file
772
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.c
Normal file
@@ -0,0 +1,772 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
|
||||
This is a byte oriented version of SHA2 that operates on arrays of bytes
|
||||
stored in memory. This code implements sha256, sha384 and sha512 but the
|
||||
latter two functions rely on efficient 64-bit integer operations that
|
||||
may not be very efficient on 32-bit machines
|
||||
|
||||
The sha256 functions use a type 'sha256_ctx' to hold details of the
|
||||
current hash state and uses the following three calls:
|
||||
|
||||
void sha256_begin(sha256_ctx ctx[1])
|
||||
void sha256_hash(const unsigned char data[],
|
||||
unsigned long len, sha256_ctx ctx[1])
|
||||
void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
|
||||
|
||||
The first subroutine initialises a hash computation by setting up the
|
||||
context in the sha256_ctx context. The second subroutine hashes 8-bit
|
||||
bytes from array data[] into the hash state withinh sha256_ctx context,
|
||||
the number of bytes to be hashed being given by the the unsigned long
|
||||
integer len. The third subroutine completes the hash calculation and
|
||||
places the resulting digest value in the array of 8-bit bytes hval[].
|
||||
|
||||
The sha384 and sha512 functions are similar and use the interfaces:
|
||||
|
||||
void sha384_begin(sha384_ctx ctx[1]);
|
||||
void sha384_hash(const unsigned char data[],
|
||||
unsigned long len, sha384_ctx ctx[1]);
|
||||
void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
|
||||
|
||||
void sha512_begin(sha512_ctx ctx[1]);
|
||||
void sha512_hash(const unsigned char data[],
|
||||
unsigned long len, sha512_ctx ctx[1]);
|
||||
void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
|
||||
In addition there is a function sha2 that can be used to call all these
|
||||
functions using a call with a hash length parameter as follows:
|
||||
|
||||
int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
|
||||
void sha2_hash(const unsigned char data[],
|
||||
unsigned long len, sha2_ctx ctx[1]);
|
||||
void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
|
||||
|
||||
My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
|
||||
on big-endian systems and for his assistance with corrections
|
||||
*/
|
||||
|
||||
#if 0
|
||||
#define UNROLL_SHA2 /* for SHA2 loop unroll */
|
||||
#endif
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
|
||||
#include "sha2.h"
|
||||
#include "brg_endian.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#if 0 && defined(_MSC_VER)
|
||||
#define rotl32 _lrotl
|
||||
#define rotr32 _lrotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* round transforms for SHA256 and SHA512 compression functions */
|
||||
|
||||
#define vf(n,i) v[(n - i) & 7]
|
||||
|
||||
#define hf(i) (p[i & 15] += \
|
||||
g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
|
||||
|
||||
#define v_cycle(i,j) \
|
||||
vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
|
||||
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
|
||||
vf(3,i) += vf(7,i); \
|
||||
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
|
||||
|
||||
#if defined(SHA_224) || defined(SHA_256)
|
||||
|
||||
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
|
||||
#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
|
||||
#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
|
||||
#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
|
||||
#define k_0 k256
|
||||
|
||||
/* rotated SHA256 round definition. Rather than swapping variables as in */
|
||||
/* FIPS-180, different variables are 'rotated' on each round, returning */
|
||||
/* to their starting positions every eight rounds */
|
||||
|
||||
#define q(n) v##n
|
||||
|
||||
#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
|
||||
q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
|
||||
q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
|
||||
|
||||
/* SHA256 mixing data */
|
||||
|
||||
const uint_32t k256[64] =
|
||||
{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
|
||||
0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
|
||||
0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
|
||||
0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
|
||||
0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
|
||||
0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
|
||||
0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
|
||||
0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
|
||||
0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
|
||||
0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
|
||||
0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
|
||||
0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
|
||||
0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
|
||||
0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
|
||||
0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
|
||||
0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
|
||||
};
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha256_compile(sha256_ctx ctx[1])
|
||||
{
|
||||
#if !defined(UNROLL_SHA2)
|
||||
|
||||
uint_32t j, *p = ctx->wbuf, v[8];
|
||||
|
||||
memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
|
||||
|
||||
for(j = 0; j < 64; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
|
||||
#else
|
||||
|
||||
uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
|
||||
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4]; v5 = ctx->hash[5];
|
||||
v6 = ctx->hash[6]; v7 = ctx->hash[7];
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
|
||||
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4; ctx->hash[5] += v5;
|
||||
ctx->hash[6] += v6; ctx->hash[7] += v7;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* SHA256 hash data in an array of bytes into hash buffer */
|
||||
/* and call the hash_compile function as required. */
|
||||
|
||||
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
|
||||
space = SHA256_BLOCK_SIZE - pos;
|
||||
const unsigned char *sp = data;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
while(len >= space) /* tranfer whole blocks while possible */
|
||||
{
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
|
||||
sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
|
||||
bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
|
||||
sha256_compile(ctx);
|
||||
}
|
||||
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
|
||||
}
|
||||
|
||||
/* SHA256 Final padding and digest calculation */
|
||||
|
||||
static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK);
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 3) >> 2)
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
|
||||
ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space pad and empty the buffer */
|
||||
if(i > SHA256_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha256_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
|
||||
ctx->wbuf[15] = ctx->count[0] << 3;
|
||||
sha256_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* mislaigned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_224)
|
||||
|
||||
const uint_32t i224[8] =
|
||||
{
|
||||
0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
|
||||
0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha224_begin(sha224_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha224_ctx cx[1];
|
||||
|
||||
sha224_begin(cx);
|
||||
sha224_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_256)
|
||||
|
||||
const uint_32t i256[8] =
|
||||
{
|
||||
0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
|
||||
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha256_begin(sha256_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha256_ctx cx[1];
|
||||
|
||||
sha256_begin(cx);
|
||||
sha256_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384) || defined(SHA_512)
|
||||
|
||||
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
|
||||
|
||||
#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
|
||||
|
||||
#if !defined(bswap_64)
|
||||
#define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_64(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_64(p,n)
|
||||
#endif
|
||||
|
||||
/* SHA512 mixing function definitions */
|
||||
|
||||
#ifdef s_0
|
||||
# undef s_0
|
||||
# undef s_1
|
||||
# undef g_0
|
||||
# undef g_1
|
||||
# undef k_0
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
|
||||
#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
|
||||
#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
|
||||
#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
|
||||
#define k_0 k512
|
||||
|
||||
/* SHA384/SHA512 mixing data */
|
||||
|
||||
const uint_64t k512[80] =
|
||||
{
|
||||
li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
|
||||
li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
|
||||
li_64(3956c25bf348b538), li_64(59f111f1b605d019),
|
||||
li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
|
||||
li_64(d807aa98a3030242), li_64(12835b0145706fbe),
|
||||
li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
|
||||
li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
|
||||
li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
|
||||
li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
|
||||
li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
|
||||
li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
|
||||
li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
|
||||
li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
|
||||
li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
|
||||
li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
|
||||
li_64(06ca6351e003826f), li_64(142929670a0e6e70),
|
||||
li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
|
||||
li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
|
||||
li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
|
||||
li_64(81c2c92e47edaee6), li_64(92722c851482353b),
|
||||
li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
|
||||
li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
|
||||
li_64(d192e819d6ef5218), li_64(d69906245565a910),
|
||||
li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
|
||||
li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
|
||||
li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
|
||||
li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
|
||||
li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
|
||||
li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
|
||||
li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
|
||||
li_64(90befffa23631e28), li_64(a4506cebde82bde9),
|
||||
li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
|
||||
li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
|
||||
li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
|
||||
li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
|
||||
li_64(113f9804bef90dae), li_64(1b710b35131c471b),
|
||||
li_64(28db77f523047d84), li_64(32caab7b40c72493),
|
||||
li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
|
||||
li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
|
||||
li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
|
||||
};
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA384/512 digest */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_compile(sha512_ctx ctx[1])
|
||||
{ uint_64t v[8], *p = ctx->wbuf;
|
||||
uint_32t j;
|
||||
|
||||
memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
|
||||
|
||||
for(j = 0; j < 80; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
}
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream placed in this */
|
||||
/* buffer will now go to the high end of words on BOTH big */
|
||||
/* and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
|
||||
space = SHA512_BLOCK_SIZE - pos;
|
||||
const unsigned char *sp = data;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
while(len >= space) /* tranfer whole blocks while possible */
|
||||
{
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
|
||||
sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
|
||||
bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
|
||||
sha512_compile(ctx);
|
||||
}
|
||||
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
|
||||
}
|
||||
|
||||
/* SHA384/512 Final padding and digest calculation */
|
||||
|
||||
static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK);
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_64(ctx->wbuf, (i + 7) >> 3);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
|
||||
ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);
|
||||
|
||||
/* we need 17 or more empty byte positions, one for the padding */
|
||||
/* byte (above) and sixteen for the length count. If there is */
|
||||
/* not enough space pad and empty the buffer */
|
||||
if(i > SHA512_BLOCK_SIZE - 17)
|
||||
{
|
||||
if(i < 120) ctx->wbuf[15] = 0;
|
||||
sha512_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else
|
||||
i = (i >> 3) + 1;
|
||||
|
||||
while(i < 14)
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 64-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 64-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
|
||||
ctx->wbuf[15] = ctx->count[0] << 3;
|
||||
sha512_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384)
|
||||
|
||||
/* SHA384 initialisation data */
|
||||
|
||||
const uint_64t i384[80] =
|
||||
{
|
||||
li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
|
||||
li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
|
||||
li_64(67332667ffc00b31), li_64(8eb44a8768581511),
|
||||
li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
|
||||
};
|
||||
|
||||
VOID_RETURN sha384_begin(sha384_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha384_ctx cx[1];
|
||||
|
||||
sha384_begin(cx);
|
||||
sha384_hash(data, len, cx);
|
||||
sha_end2(hval, cx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_512)
|
||||
|
||||
/* SHA512 initialisation data */
|
||||
|
||||
const uint_64t i512[80] =
|
||||
{
|
||||
li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
|
||||
li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
|
||||
li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
|
||||
li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
|
||||
};
|
||||
|
||||
VOID_RETURN sha512_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_begin(cx);
|
||||
sha512_hash(data, len, cx);
|
||||
sha_end2(hval, cx, SHA512_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_2)
|
||||
|
||||
#define CTX_224(x) ((x)->uu->ctx256)
|
||||
#define CTX_256(x) ((x)->uu->ctx256)
|
||||
#define CTX_384(x) ((x)->uu->ctx512)
|
||||
#define CTX_512(x) ((x)->uu->ctx512)
|
||||
|
||||
/* SHA2 initialisation */
|
||||
|
||||
INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 224:
|
||||
case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i224, 32);
|
||||
ctx->sha2_len = 28; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 256:
|
||||
case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i256, 32);
|
||||
ctx->sha2_len = 32; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 384:
|
||||
case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
|
||||
memcpy(CTX_384(ctx)->hash, i384, 64);
|
||||
ctx->sha2_len = 48; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 512:
|
||||
case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
|
||||
memcpy(CTX_512(ctx)->hash, i512, 64);
|
||||
ctx->sha2_len = 64; return EXIT_SUCCESS;
|
||||
#endif
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha224_hash(data, len, CTX_224(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha256_hash(data, len, CTX_256(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha384_hash(data, len, CTX_384(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha512_hash(data, len, CTX_512(ctx)); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
INT_RETURN sha2(unsigned char hval[], unsigned long size,
|
||||
const unsigned char data[], unsigned long len)
|
||||
{ sha2_ctx cx[1];
|
||||
|
||||
if(sha2_begin(size, cx) == EXIT_SUCCESS)
|
||||
{
|
||||
sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
|
||||
}
|
||||
else
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
151
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.h
Normal file
151
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.h
Normal file
@@ -0,0 +1,151 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
*/
|
||||
|
||||
#ifndef _SHA2_H
|
||||
#define _SHA2_H
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#define SHA_64BIT
|
||||
|
||||
/* define the hash functions that you need */
|
||||
#define SHA_2 /* for dynamic hash length */
|
||||
#define SHA_224
|
||||
#define SHA_256
|
||||
#ifdef SHA_64BIT
|
||||
# define SHA_384
|
||||
# define SHA_512
|
||||
# define NEED_UINT_64T
|
||||
#endif
|
||||
|
||||
#include "brg_types.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Note that the following function prototypes are the same */
|
||||
/* for both the bit and byte oriented implementations. But */
|
||||
/* the length fields are in bytes or bits as is appropriate */
|
||||
/* for the version used. Bit sequences are arrays of bytes */
|
||||
/* in which bit sequence indexes increase from the most to */
|
||||
/* the least significant end of each byte */
|
||||
|
||||
#define SHA224_DIGEST_SIZE 28
|
||||
#define SHA224_BLOCK_SIZE 64
|
||||
#define SHA256_DIGEST_SIZE 32
|
||||
#define SHA256_BLOCK_SIZE 64
|
||||
|
||||
/* type to hold the SHA256 (and SHA224) context */
|
||||
|
||||
typedef struct
|
||||
{ uint_32t count[2];
|
||||
uint_32t hash[8];
|
||||
uint_32t wbuf[16];
|
||||
} sha256_ctx;
|
||||
|
||||
typedef sha256_ctx sha224_ctx;
|
||||
|
||||
VOID_RETURN sha256_compile(sha256_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha224_begin(sha224_ctx ctx[1]);
|
||||
#define sha224_hash sha256_hash
|
||||
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]);
|
||||
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha256_begin(sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
#ifndef SHA_64BIT
|
||||
|
||||
typedef struct
|
||||
{ union
|
||||
{ sha256_ctx ctx256[1];
|
||||
} uu[1];
|
||||
uint_32t sha2_len;
|
||||
} sha2_ctx;
|
||||
|
||||
#define SHA2_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE
|
||||
|
||||
#else
|
||||
|
||||
#define SHA384_DIGEST_SIZE 48
|
||||
#define SHA384_BLOCK_SIZE 128
|
||||
#define SHA512_DIGEST_SIZE 64
|
||||
#define SHA512_BLOCK_SIZE 128
|
||||
#define SHA2_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
|
||||
|
||||
/* type to hold the SHA384 (and SHA512) context */
|
||||
|
||||
typedef struct
|
||||
{ uint_64t count[2];
|
||||
uint_64t hash[8];
|
||||
uint_64t wbuf[16];
|
||||
} sha512_ctx;
|
||||
|
||||
typedef sha512_ctx sha384_ctx;
|
||||
|
||||
typedef struct
|
||||
{ union
|
||||
{ sha256_ctx ctx256[1];
|
||||
sha512_ctx ctx512[1];
|
||||
} uu[1];
|
||||
uint_32t sha2_len;
|
||||
} sha2_ctx;
|
||||
|
||||
VOID_RETURN sha512_compile(sha512_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha384_begin(sha384_ctx ctx[1]);
|
||||
#define sha384_hash sha512_hash
|
||||
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
|
||||
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha512_begin(sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
INT_RETURN sha2_begin(unsigned long size, sha2_ctx ctx[1]);
|
||||
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]);
|
||||
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
|
||||
INT_RETURN sha2(unsigned char hval[], unsigned long size, const unsigned char data[], unsigned long len);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
833
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2b.c
Normal file
833
src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2b.c
Normal file
@@ -0,0 +1,833 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
|
||||
This is a bit oriented version of SHA2 that operates on arrays of bytes
|
||||
stored in memory. This code implements sha256, sha384 and sha512 but the
|
||||
latter two functions rely on efficient 64-bit integer operations that
|
||||
may not be very efficient on 32-bit machines
|
||||
|
||||
The sha256 functions use a type 'sha256_ctx' to hold details of the
|
||||
current hash state and uses the following three calls:
|
||||
|
||||
void sha256_begin(sha256_ctx ctx[1])
|
||||
void sha256_hash(const unsigned char data[],
|
||||
unsigned long len, sha256_ctx ctx[1])
|
||||
void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
|
||||
|
||||
The first subroutine initialises a hash computation by setting up the
|
||||
context in the sha256_ctx context. The second subroutine hashes 8-bit
|
||||
bytes from array data[] into the hash state withinh sha256_ctx context,
|
||||
the number of bytes to be hashed being given by the the unsigned long
|
||||
integer len. The third subroutine completes the hash calculation and
|
||||
places the resulting digest value in the array of 8-bit bytes hval[].
|
||||
|
||||
The sha384 and sha512 functions are similar and use the interfaces:
|
||||
|
||||
void sha384_begin(sha384_ctx ctx[1]);
|
||||
void sha384_hash(const unsigned char data[],
|
||||
unsigned long len, sha384_ctx ctx[1]);
|
||||
void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
|
||||
|
||||
void sha512_begin(sha512_ctx ctx[1]);
|
||||
void sha512_hash(const unsigned char data[],
|
||||
unsigned long len, sha512_ctx ctx[1]);
|
||||
void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
|
||||
In addition there is a function sha2 that can be used to call all these
|
||||
functions using a call with a hash length parameter as follows:
|
||||
|
||||
int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
|
||||
void sha2_hash(const unsigned char data[],
|
||||
unsigned long len, sha2_ctx ctx[1]);
|
||||
void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
|
||||
|
||||
My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
|
||||
on big-endian systems and for his assistance with corrections
|
||||
*/
|
||||
|
||||
#if 1
|
||||
#define UNROLL_SHA2 /* for SHA2 loop unroll */
|
||||
#endif
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
|
||||
#include "sha2.h"
|
||||
#include "brg_endian.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#if 0 && defined(_MSC_VER)
|
||||
#define rotl32 _lrotl
|
||||
#define rotr32 _lrotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* round transforms for SHA256 and SHA512 compression functions */
|
||||
|
||||
#define vf(n,i) v[(n - i) & 7]
|
||||
|
||||
#define hf(i) (p[i & 15] += \
|
||||
g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
|
||||
|
||||
#define v_cycle(i,j) \
|
||||
vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
|
||||
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
|
||||
vf(3,i) += vf(7,i); \
|
||||
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
|
||||
|
||||
#if defined(SHA_224) || defined(SHA_256)
|
||||
|
||||
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
|
||||
#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
|
||||
#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
|
||||
#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
|
||||
#define k_0 k256
|
||||
|
||||
/* rotated SHA256 round definition. Rather than swapping variables as in */
|
||||
/* FIPS-180, different variables are 'rotated' on each round, returning */
|
||||
/* to their starting positions every eight rounds */
|
||||
|
||||
#define q(n) v##n
|
||||
|
||||
#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
|
||||
q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
|
||||
q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
|
||||
|
||||
/* SHA256 mixing data */
|
||||
|
||||
const uint_32t k256[64] =
|
||||
{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
|
||||
0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
|
||||
0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
|
||||
0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
|
||||
0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
|
||||
0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
|
||||
0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
|
||||
0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
|
||||
0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
|
||||
0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
|
||||
0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
|
||||
0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
|
||||
0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
|
||||
0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
|
||||
0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
|
||||
0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
|
||||
};
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha256_compile(sha256_ctx ctx[1])
|
||||
{
|
||||
#if !defined(UNROLL_SHA2)
|
||||
|
||||
uint_32t j, *p = ctx->wbuf, v[8];
|
||||
|
||||
memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
|
||||
|
||||
for(j = 0; j < 64; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
|
||||
#else
|
||||
|
||||
uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
|
||||
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4]; v5 = ctx->hash[5];
|
||||
v6 = ctx->hash[6]; v7 = ctx->hash[7];
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
|
||||
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4; ctx->hash[5] += v5;
|
||||
ctx->hash[6] += v6; ctx->hash[7] += v7;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* SHA256 hash data in an array of bytes into hash buffer */
|
||||
/* and call the hash_compile function as required. */
|
||||
|
||||
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK),
|
||||
ofs = (ctx->count[0] & 7);
|
||||
const unsigned char *sp = data;
|
||||
unsigned char *w = (unsigned char*)ctx->wbuf;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
if(ofs) /* if not on a byte boundary */
|
||||
{
|
||||
if(ofs + len < 8) /* if no added bytes are needed */
|
||||
{
|
||||
w[pos] |= (*sp >> ofs);
|
||||
}
|
||||
else /* otherwise and add bytes */
|
||||
{ unsigned char part = w[pos];
|
||||
|
||||
while((int)(ofs + (len -= 8)) >= 0)
|
||||
{
|
||||
w[pos++] = part | (*sp >> ofs);
|
||||
part = *sp++ << (8 - ofs);
|
||||
if(pos == SHA256_BLOCK_SIZE)
|
||||
{
|
||||
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
|
||||
sha256_compile(ctx); pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
w[pos] = part;
|
||||
}
|
||||
}
|
||||
else /* data is byte aligned */
|
||||
{ uint_32t space = SHA256_BLOCK_SIZE - pos;
|
||||
|
||||
while((int)(len - 8 * space) >= 0)
|
||||
{
|
||||
len -= 8 * space;
|
||||
memcpy(w + pos, sp, space);
|
||||
sp += space;
|
||||
space = SHA256_BLOCK_SIZE;
|
||||
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
|
||||
sha256_compile(ctx); pos = 0;
|
||||
}
|
||||
memcpy(w + pos, sp, (len + 7) >> 3);
|
||||
}
|
||||
}
|
||||
|
||||
/* SHA256 Final padding and digest calculation */
|
||||
|
||||
static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK), m1;
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 4) >> 2)
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
||||
ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3));
|
||||
ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3));
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space pad and empty the buffer */
|
||||
if(i > SHA256_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha256_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = ctx->count[1];
|
||||
ctx->wbuf[15] = ctx->count[0];
|
||||
sha256_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* mislaigned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_224)
|
||||
|
||||
const uint_32t i224[8] =
|
||||
{
|
||||
0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
|
||||
0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha224_begin(sha224_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha224_ctx cx[1];
|
||||
|
||||
sha224_begin(cx);
|
||||
sha224_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_256)
|
||||
|
||||
const uint_32t i256[8] =
|
||||
{
|
||||
0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
|
||||
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha256_begin(sha256_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha256_ctx cx[1];
|
||||
|
||||
sha256_begin(cx);
|
||||
sha256_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384) || defined(SHA_512)
|
||||
|
||||
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
|
||||
|
||||
#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
|
||||
|
||||
#if !defined(bswap_64)
|
||||
#define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_64(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_64(p,n)
|
||||
#endif
|
||||
|
||||
/* SHA512 mixing function definitions */
|
||||
|
||||
#ifdef s_0
|
||||
# undef s_0
|
||||
# undef s_1
|
||||
# undef g_0
|
||||
# undef g_1
|
||||
# undef k_0
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
|
||||
#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
|
||||
#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
|
||||
#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
|
||||
#define k_0 k512
|
||||
|
||||
/* SHA384/SHA512 mixing data */
|
||||
|
||||
const uint_64t k512[80] =
|
||||
{
|
||||
li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
|
||||
li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
|
||||
li_64(3956c25bf348b538), li_64(59f111f1b605d019),
|
||||
li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
|
||||
li_64(d807aa98a3030242), li_64(12835b0145706fbe),
|
||||
li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
|
||||
li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
|
||||
li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
|
||||
li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
|
||||
li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
|
||||
li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
|
||||
li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
|
||||
li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
|
||||
li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
|
||||
li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
|
||||
li_64(06ca6351e003826f), li_64(142929670a0e6e70),
|
||||
li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
|
||||
li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
|
||||
li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
|
||||
li_64(81c2c92e47edaee6), li_64(92722c851482353b),
|
||||
li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
|
||||
li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
|
||||
li_64(d192e819d6ef5218), li_64(d69906245565a910),
|
||||
li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
|
||||
li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
|
||||
li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
|
||||
li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
|
||||
li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
|
||||
li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
|
||||
li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
|
||||
li_64(90befffa23631e28), li_64(a4506cebde82bde9),
|
||||
li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
|
||||
li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
|
||||
li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
|
||||
li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
|
||||
li_64(113f9804bef90dae), li_64(1b710b35131c471b),
|
||||
li_64(28db77f523047d84), li_64(32caab7b40c72493),
|
||||
li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
|
||||
li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
|
||||
li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
|
||||
};
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA384/512 digest */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_compile(sha512_ctx ctx[1])
|
||||
{ uint_64t v[8], *p = ctx->wbuf;
|
||||
uint_32t j;
|
||||
|
||||
memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
|
||||
|
||||
for(j = 0; j < 80; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
}
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream placed in this */
|
||||
/* buffer will now go to the high end of words on BOTH big */
|
||||
/* and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)(ctx->count[0] >> 3) & SHA512_MASK,
|
||||
ofs = (uint_32t)(ctx->count[0] & 7);
|
||||
const unsigned char *sp = data;
|
||||
unsigned char *w = (unsigned char*)ctx->wbuf;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
if(ofs) /* if not on a byte boundary */
|
||||
{
|
||||
if(ofs + len < 8) /* if no added bytes are needed */
|
||||
{
|
||||
w[pos] |= (*sp >> ofs);
|
||||
}
|
||||
else /* otherwise and add bytes */
|
||||
{ unsigned char part = w[pos];
|
||||
|
||||
while((int)(ofs + (len -= 8)) >= 0)
|
||||
{
|
||||
w[pos++] = part | (*sp >> ofs);
|
||||
part = *sp++ << (8 - ofs);
|
||||
if(pos == SHA512_BLOCK_SIZE)
|
||||
{
|
||||
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
|
||||
sha512_compile(ctx); pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
w[pos] = part;
|
||||
}
|
||||
}
|
||||
else /* data is byte aligned */
|
||||
{ uint_32t space = SHA512_BLOCK_SIZE - pos;
|
||||
|
||||
while((int)(len - 8 * space) >= 0)
|
||||
{
|
||||
len -= 8 * space;
|
||||
memcpy(w + pos, sp, space);
|
||||
sp += space;
|
||||
space = SHA512_BLOCK_SIZE;
|
||||
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
|
||||
sha512_compile(ctx); pos = 0;
|
||||
}
|
||||
memcpy(w + pos, sp, (len + 7) >> 3);
|
||||
}
|
||||
}
|
||||
|
||||
/* SHA384/512 Final padding and digest calculation */
|
||||
|
||||
static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA512_MASK);
|
||||
uint_64t m1;
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_64(ctx->wbuf, (i + 8) >> 3);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
||||
ctx->wbuf[i >> 3] &= ((li_64(ffffffffffffff00) | (~m1 + 1)) << 8 * (~i & 7));
|
||||
ctx->wbuf[i >> 3] |= (m1 << 8 * (~i & 7));
|
||||
|
||||
/* we need 17 or more empty byte positions, one for the padding */
|
||||
/* byte (above) and sixteen for the length count. If there is */
|
||||
/* not enough space pad and empty the buffer */
|
||||
if(i > SHA512_BLOCK_SIZE - 17)
|
||||
{
|
||||
if(i < 120) ctx->wbuf[15] = 0;
|
||||
sha512_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else
|
||||
i = (i >> 3) + 1;
|
||||
|
||||
while(i < 14)
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 64-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 64-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = ctx->count[1];
|
||||
ctx->wbuf[15] = ctx->count[0];
|
||||
sha512_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384)
|
||||
|
||||
/* SHA384 initialisation data */
|
||||
|
||||
const uint_64t i384[80] =
|
||||
{
|
||||
li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
|
||||
li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
|
||||
li_64(67332667ffc00b31), li_64(8eb44a8768581511),
|
||||
li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
|
||||
};
|
||||
|
||||
VOID_RETURN sha384_begin(sha384_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha384_ctx cx[1];
|
||||
|
||||
sha384_begin(cx);
|
||||
sha384_hash(data, len, cx);
|
||||
sha_end2(hval, cx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_512)
|
||||
|
||||
/* SHA512 initialisation data */
|
||||
|
||||
const uint_64t i512[80] =
|
||||
{
|
||||
li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
|
||||
li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
|
||||
li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
|
||||
li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
|
||||
};
|
||||
|
||||
VOID_RETURN sha512_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_begin(cx);
|
||||
sha512_hash(data, len, cx);
|
||||
sha_end2(hval, cx, SHA512_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_2)
|
||||
|
||||
#define CTX_224(x) ((x)->uu->ctx256)
|
||||
#define CTX_256(x) ((x)->uu->ctx256)
|
||||
#define CTX_384(x) ((x)->uu->ctx512)
|
||||
#define CTX_512(x) ((x)->uu->ctx512)
|
||||
|
||||
/* SHA2 initialisation */
|
||||
|
||||
INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 224:
|
||||
case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i224, 32);
|
||||
ctx->sha2_len = 28; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 256:
|
||||
case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i256, 32);
|
||||
ctx->sha2_len = 32; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 384:
|
||||
case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
|
||||
memcpy(CTX_384(ctx)->hash, i384, 64);
|
||||
ctx->sha2_len = 48; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 512:
|
||||
case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
|
||||
memcpy(CTX_512(ctx)->hash, i512, 64);
|
||||
ctx->sha2_len = 64; return EXIT_SUCCESS;
|
||||
#endif
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha224_hash(data, len, CTX_224(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha256_hash(data, len, CTX_256(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha384_hash(data, len, CTX_384(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha512_hash(data, len, CTX_512(ctx)); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
INT_RETURN sha2(unsigned char hval[], unsigned long size,
|
||||
const unsigned char data[], unsigned long len)
|
||||
{ sha2_ctx cx[1];
|
||||
|
||||
if(sha2_begin(size, cx) == EXIT_SUCCESS)
|
||||
{
|
||||
sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
|
||||
}
|
||||
else
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
62
src/java/KP2AKdbLibrary/app/src/main/jni/sha/shasum.c
Normal file
62
src/java/KP2AKdbLibrary/app/src/main/jni/sha/shasum.c
Normal file
@@ -0,0 +1,62 @@
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sha2.h"
|
||||
|
||||
#define BUF_SIZE 16384
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{ FILE *inf;
|
||||
sha256_ctx ctx[1];
|
||||
unsigned char buf[BUF_SIZE], hval[SHA256_DIGEST_SIZE];
|
||||
int i, len, is_console;
|
||||
|
||||
if(argc != 2)
|
||||
{
|
||||
printf("\nusage: shasum filename\n");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
if(is_console = (!strcmp(argv[1], "con") || !strcmp(argv[1], "CON")))
|
||||
{
|
||||
if(!(inf = fopen(argv[1], "r")))
|
||||
{
|
||||
printf("\n%s not found\n", argv[1]);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
else if(!(inf = fopen(argv[1], "rb")))
|
||||
{
|
||||
printf("\n%s not found\n", argv[1]);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
sha256_begin(ctx);
|
||||
do
|
||||
{
|
||||
len = (int)fread(buf, 1, BUF_SIZE, inf);
|
||||
i = len;
|
||||
if(is_console)
|
||||
{
|
||||
i = 0;
|
||||
while(i < len && buf[i] != '\x1a')
|
||||
++i;
|
||||
}
|
||||
if(i)
|
||||
sha256_hash(buf, i, ctx);
|
||||
}
|
||||
while
|
||||
(len && i == len);
|
||||
|
||||
fclose(inf);
|
||||
sha256_end(hval, ctx);
|
||||
|
||||
printf("\n");
|
||||
for(i = 0; i < SHA256_DIGEST_SIZE; ++i)
|
||||
printf("%02x", hval[i]);
|
||||
printf("\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user