From b8d161ffeed15bdc7cc41ab848f839080b9f60b8 Mon Sep 17 00:00:00 2001 From: Philipp Crocoll Date: Thu, 3 Oct 2019 17:18:11 +0200 Subject: [PATCH] add sha sources to repo --- .../app/src/main/jni/sha/.gitignore | 13 - .../app/src/main/jni/sha/brg_endian.h | 136 +++ .../app/src/main/jni/sha/brg_types.h | 184 ++++ .../app/src/main/jni/sha/hmac.c | 144 +++ .../app/src/main/jni/sha/hmac.h | 101 +++ .../app/src/main/jni/sha/pwd2key.c | 193 ++++ .../app/src/main/jni/sha/pwd2key.h | 57 ++ .../app/src/main/jni/sha/sha1.c | 258 ++++++ .../app/src/main/jni/sha/sha1.h | 73 ++ .../app/src/main/jni/sha/sha1b.c | 287 ++++++ .../app/src/main/jni/sha/sha2.c | 772 ++++++++++++++++ .../app/src/main/jni/sha/sha2.h | 151 ++++ .../app/src/main/jni/sha/sha2b.c | 833 ++++++++++++++++++ .../app/src/main/jni/sha/shasum.c | 62 ++ 14 files changed, 3251 insertions(+), 13 deletions(-) create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_endian.h create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_types.h create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.c create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.h create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.c create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.h create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.c create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.h create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1b.c create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.c create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.h create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2b.c create mode 100644 src/java/KP2AKdbLibrary/app/src/main/jni/sha/shasum.c diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/.gitignore b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/.gitignore index 18596cbc..e69de29b 100644 --- a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/.gitignore +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/.gitignore @@ -1,13 +0,0 @@ -brg_endian.h -brg_types.h -hmac.c -hmac.h -pwd2key.c -pwd2key.h -sha1b.c -sha1.c -sha1.h -sha2b.c -sha2.c -sha2.h -shasum.c diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_endian.h b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_endian.h new file mode 100644 index 00000000..2011c4aa --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_endian.h @@ -0,0 +1,136 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue 20/10/2006 +*/ + +#ifndef BRG_ENDIAN_H +#define BRG_ENDIAN_H + +#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ +#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ + +/* Include files where endian defines and byteswap functions may reside */ +#if defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ ) +# include +#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \ + defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ ) +# include +#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ ) +# if !defined( __MINGW32__ ) +# include +# if !defined( __BEOS__ ) +# include +# endif +# endif +#endif + +/* Now attempt to set the define for platform byte order using any */ +/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */ +/* seem to encompass most endian symbol definitions */ + +#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN ) +# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +# endif +#elif defined( BIG_ENDIAN ) +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +#elif defined( LITTLE_ENDIAN ) +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +#endif + +#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN ) +# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +# endif +#elif defined( _BIG_ENDIAN ) +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +#elif defined( _LITTLE_ENDIAN ) +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +#endif + +#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN ) +# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +# endif +#elif defined( __BIG_ENDIAN ) +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +#elif defined( __LITTLE_ENDIAN ) +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +#endif + +#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ ) +# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__ +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__ +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +# endif +#elif defined( __BIG_ENDIAN__ ) +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +#elif defined( __LITTLE_ENDIAN__ ) +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +#endif + +/* if the platform byte order could not be determined, then try to */ +/* set this define using common machine defines */ +#if !defined(PLATFORM_BYTE_ORDER) + +#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \ + defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \ + defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \ + defined( vax ) || defined( vms ) || defined( VMS ) || \ + defined( __VMS ) || defined( _M_X64 ) +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN + +#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \ + defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \ + defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \ + defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \ + defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \ + defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \ + defined( THINK_C ) || defined( __VMCMS__ ) +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN + +#elif 0 /* **** EDIT HERE IF NECESSARY **** */ +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +#elif 0 /* **** EDIT HERE IF NECESSARY **** */ +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +#else +# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order +#endif + +#endif + +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_types.h b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_types.h new file mode 100644 index 00000000..fefb09a5 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/brg_types.h @@ -0,0 +1,184 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue 09/09/2006 + + The unsigned integer types defined here are of the form uint_t where + is the length of the type; for example, the unsigned 32-bit type is + 'uint_32t'. These are NOT the same as the 'C99 integer types' that are + defined in the inttypes.h and stdint.h headers since attempts to use these + types have shown that support for them is still highly variable. However, + since the latter are of the form uint_t, a regular expression search + and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t') + can be used to convert the types used here to the C99 standard types. +*/ + +#ifndef BRG_TYPES_H +#define BRG_TYPES_H + +#if defined(__cplusplus) +extern "C" { +#endif + +#include + +#ifndef BRG_UI8 +# define BRG_UI8 +# if UCHAR_MAX == 255u + typedef unsigned char uint_8t; +# else +# error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h +# endif +#endif + +#ifndef BRG_UI16 +# define BRG_UI16 +# if USHRT_MAX == 65535u + typedef unsigned short uint_16t; +# else +# error Please define uint_16t as a 16-bit unsigned short type in brg_types.h +# endif +#endif + +#ifndef BRG_UI32 +# define BRG_UI32 +# if UINT_MAX == 4294967295u +# define li_32(h) 0x##h##u + typedef unsigned int uint_32t; +# elif ULONG_MAX == 4294967295u +# define li_32(h) 0x##h##ul + typedef unsigned long uint_32t; +# elif defined( _CRAY ) +# error This code needs 32-bit data types, which Cray machines do not provide +# else +# error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h +# endif +#endif + +#ifndef BRG_UI64 +# if defined( __BORLANDC__ ) && !defined( __MSDOS__ ) +# define BRG_UI64 +# define li_64(h) 0x##h##ull + typedef unsigned __int64 uint_64t; +# elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */ +# define BRG_UI64 +# define li_64(h) 0x##h##ui64 + typedef unsigned __int64 uint_64t; +# elif defined( __sun ) && defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful +# define BRG_UI64 +# define li_64(h) 0x##h##ull + typedef unsigned long long uint_64t; +# elif defined( UINT_MAX ) && UINT_MAX > 4294967295u +# if UINT_MAX == 18446744073709551615u +# define BRG_UI64 +# define li_64(h) 0x##h##u + typedef unsigned int uint_64t; +# endif +# elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u +# if ULONG_MAX == 18446744073709551615ul +# define BRG_UI64 +# define li_64(h) 0x##h##ul + typedef unsigned long uint_64t; +# endif +# elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u +# if ULLONG_MAX == 18446744073709551615ull +# define BRG_UI64 +# define li_64(h) 0x##h##ull + typedef unsigned long long uint_64t; +# endif +# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u +# if ULONG_LONG_MAX == 18446744073709551615ull +# define BRG_UI64 +# define li_64(h) 0x##h##ull + typedef unsigned long long uint_64t; +# endif +# endif +#endif + +#if defined( NEED_UINT_64T ) && !defined( BRG_UI64 ) +# error Please define uint_64t as an unsigned 64 bit type in brg_types.h +#endif + +#ifndef RETURN_VALUES +# define RETURN_VALUES +# if defined( DLL_EXPORT ) +# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER ) +# define VOID_RETURN __declspec( dllexport ) void __stdcall +# define INT_RETURN __declspec( dllexport ) int __stdcall +# elif defined( __GNUC__ ) +# define VOID_RETURN __declspec( __dllexport__ ) void +# define INT_RETURN __declspec( __dllexport__ ) int +# else +# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers +# endif +# elif defined( DLL_IMPORT ) +# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER ) +# define VOID_RETURN __declspec( dllimport ) void __stdcall +# define INT_RETURN __declspec( dllimport ) int __stdcall +# elif defined( __GNUC__ ) +# define VOID_RETURN __declspec( __dllimport__ ) void +# define INT_RETURN __declspec( __dllimport__ ) int +# else +# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers +# endif +# elif defined( __WATCOMC__ ) +# define VOID_RETURN void __cdecl +# define INT_RETURN int __cdecl +# else +# define VOID_RETURN void +# define INT_RETURN int +# endif +#endif + +/* These defines are used to declare buffers in a way that allows + faster operations on longer variables to be used. In all these + defines 'size' must be a power of 2 and >= 8 + + dec_unit_type(size,x) declares a variable 'x' of length + 'size' bits + + dec_bufr_type(size,bsize,x) declares a buffer 'x' of length 'bsize' + bytes defined as an array of variables + each of 'size' bits (bsize must be a + multiple of size / 8) + + ptr_cast(x,size) casts a pointer to a pointer to a + varaiable of length 'size' bits +*/ + +#define ui_type(size) uint_##size##t +#define dec_unit_type(size,x) typedef ui_type(size) x +#define dec_bufr_type(size,bsize,x) typedef ui_type(size) x[bsize / (size >> 3)] +#define ptr_cast(x,size) ((ui_type(size)*)(x)) + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.c b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.c new file mode 100644 index 00000000..1c0c582c --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.c @@ -0,0 +1,144 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 26/08/2003 + + This is an implementation of HMAC, the FIPS standard keyed hash function +*/ + +#include "hmac.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +/* initialise the HMAC context to zero */ +void hmac_sha_begin(hmac_ctx cx[1]) +{ + memset(cx, 0, sizeof(hmac_ctx)); +} + +/* input the HMAC key (can be called multiple times) */ +int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1]) +{ + if(cx->klen == HMAC_IN_DATA) /* error if further key input */ + return HMAC_BAD_MODE; /* is attempted in data mode */ + + if(cx->klen + key_len > HASH_INPUT_SIZE) /* if the key has to be hashed */ + { + if(cx->klen <= HASH_INPUT_SIZE) /* if the hash has not yet been */ + { /* started, initialise it and */ + sha_begin(cx->ctx); /* hash stored key characters */ + sha_hash(cx->key, cx->klen, cx->ctx); + } + + sha_hash(key, key_len, cx->ctx); /* hash long key data into hash */ + } + else /* otherwise store key data */ + memcpy(cx->key + cx->klen, key, key_len); + + cx->klen += key_len; /* update the key length count */ + return HMAC_OK; +} + +/* input the HMAC data (can be called multiple times) - */ +/* note that this call terminates the key input phase */ +void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1]) +{ unsigned int i; + + if(cx->klen != HMAC_IN_DATA) /* if not yet in data phase */ + { + if(cx->klen > HASH_INPUT_SIZE) /* if key is being hashed */ + { /* complete the hash and */ + sha_end(cx->key, cx->ctx); /* store the result as the */ + cx->klen = HASH_OUTPUT_SIZE; /* key and set new length */ + } + + /* pad the key if necessary */ + memset(cx->key + cx->klen, 0, HASH_INPUT_SIZE - cx->klen); + + /* xor ipad into key value */ + for(i = 0; i < (HASH_INPUT_SIZE >> 2); ++i) + ((uint_32t*)cx->key)[i] ^= 0x36363636; + + /* and start hash operation */ + sha_begin(cx->ctx); + sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx); + + /* mark as now in data mode */ + cx->klen = HMAC_IN_DATA; + } + + /* hash the data (if any) */ + if(data_len) + sha_hash(data, data_len, cx->ctx); +} + +/* compute and output the MAC value */ +void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1]) +{ unsigned char dig[HASH_OUTPUT_SIZE]; + unsigned int i; + + /* if no data has been entered perform a null data phase */ + if(cx->klen != HMAC_IN_DATA) + hmac_sha_data((const unsigned char*)0, 0, cx); + + sha_end(dig, cx->ctx); /* complete the inner hash */ + + /* set outer key value using opad and removing ipad */ + for(i = 0; i < (HASH_INPUT_SIZE >> 2); ++i) + ((uint_32t*)cx->key)[i] ^= 0x36363636 ^ 0x5c5c5c5c; + + /* perform the outer hash operation */ + sha_begin(cx->ctx); + sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx); + sha_hash(dig, HASH_OUTPUT_SIZE, cx->ctx); + sha_end(dig, cx->ctx); + + /* output the hash value */ + for(i = 0; i < mac_len; ++i) + mac[i] = dig[i]; +} + +/* 'do it all in one go' subroutine */ +void hmac_sha(const unsigned char key[], unsigned long key_len, + const unsigned char data[], unsigned long data_len, + unsigned char mac[], unsigned long mac_len) +{ hmac_ctx cx[1]; + + hmac_sha_begin(cx); + hmac_sha_key(key, key_len, cx); + hmac_sha_data(data, data_len, cx); + hmac_sha_end(mac, mac_len, cx); +} + +#if defined(__cplusplus) +} +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.h b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.h new file mode 100644 index 00000000..a1131ee9 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/hmac.h @@ -0,0 +1,101 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 26/08/2003 + + This is an implementation of HMAC, the FIPS standard keyed hash function +*/ + +#ifndef _HMAC_H +#define _HMAC_H + +#include + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if !defined(USE_SHA1) && !defined(USE_SHA256) +#error define USE_SHA1 or USE_SHA256 to set the HMAC hash algorithm +#endif + +#ifdef USE_SHA1 + +#include "sha1.h" + +#define HASH_INPUT_SIZE SHA1_BLOCK_SIZE +#define HASH_OUTPUT_SIZE SHA1_DIGEST_SIZE +#define sha_ctx sha1_ctx +#define sha_begin sha1_begin +#define sha_hash sha1_hash +#define sha_end sha1_end + +#endif + +#ifdef USE_SHA256 + +#include "sha2.h" + +#define HASH_INPUT_SIZE SHA256_BLOCK_SIZE +#define HASH_OUTPUT_SIZE SHA256_DIGEST_SIZE +#define sha_ctx sha256_ctx +#define sha_begin sha256_begin +#define sha_hash sha256_hash +#define sha_end sha256_end + +#endif + +#define HMAC_OK 0 +#define HMAC_BAD_MODE -1 +#define HMAC_IN_DATA 0xffffffff + +typedef struct +{ unsigned char key[HASH_INPUT_SIZE]; + sha_ctx ctx[1]; + unsigned long klen; +} hmac_ctx; + +void hmac_sha_begin(hmac_ctx cx[1]); + +int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1]); + +void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1]); + +void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1]); + +void hmac_sha(const unsigned char key[], unsigned long key_len, + const unsigned char data[], unsigned long data_len, + unsigned char mac[], unsigned long mac_len); + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.c b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.c new file mode 100644 index 00000000..d3c6abbf --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.c @@ -0,0 +1,193 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 26/08/2003 + + This is an implementation of RFC2898, which specifies key derivation from + a password and a salt value. +*/ + +#include +#include "hmac.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +void derive_key(const unsigned char pwd[], /* the PASSWORD */ + unsigned int pwd_len, /* and its length */ + const unsigned char salt[], /* the SALT and its */ + unsigned int salt_len, /* length */ + unsigned int iter, /* the number of iterations */ + unsigned char key[], /* space for the output key */ + unsigned int key_len)/* and its required length */ +{ + unsigned int i, j, k, n_blk; + unsigned char uu[HASH_OUTPUT_SIZE], ux[HASH_OUTPUT_SIZE]; + hmac_ctx c1[1], c2[1], c3[1]; + + /* set HMAC context (c1) for password */ + hmac_sha_begin(c1); + hmac_sha_key(pwd, pwd_len, c1); + + /* set HMAC context (c2) for password and salt */ + memcpy(c2, c1, sizeof(hmac_ctx)); + hmac_sha_data(salt, salt_len, c2); + + /* find the number of SHA blocks in the key */ + n_blk = 1 + (key_len - 1) / HASH_OUTPUT_SIZE; + + for(i = 0; i < n_blk; ++i) /* for each block in key */ + { + /* ux[] holds the running xor value */ + memset(ux, 0, HASH_OUTPUT_SIZE); + + /* set HMAC context (c3) for password and salt */ + memcpy(c3, c2, sizeof(hmac_ctx)); + + /* enter additional data for 1st block into uu */ + uu[0] = (unsigned char)((i + 1) >> 24); + uu[1] = (unsigned char)((i + 1) >> 16); + uu[2] = (unsigned char)((i + 1) >> 8); + uu[3] = (unsigned char)(i + 1); + + /* this is the key mixing iteration */ + for(j = 0, k = 4; j < iter; ++j) + { + /* add previous round data to HMAC */ + hmac_sha_data(uu, k, c3); + + /* obtain HMAC for uu[] */ + hmac_sha_end(uu, HASH_OUTPUT_SIZE, c3); + + /* xor into the running xor block */ + for(k = 0; k < HASH_OUTPUT_SIZE; ++k) + ux[k] ^= uu[k]; + + /* set HMAC context (c3) for password */ + memcpy(c3, c1, sizeof(hmac_ctx)); + } + + /* compile key blocks into the key output */ + j = 0; k = i * HASH_OUTPUT_SIZE; + while(j < HASH_OUTPUT_SIZE && k < key_len) + key[k++] = ux[j++]; + } +} + +#ifdef TEST + +#include + +struct +{ unsigned int pwd_len; + unsigned int salt_len; + unsigned int it_count; + unsigned char *pwd; + unsigned char salt[32]; + unsigned char key[32]; +} tests[] = +{ + { 8, 4, 5, (unsigned char*)"password", + { + 0x12, 0x34, 0x56, 0x78 + }, + { + 0x5c, 0x75, 0xce, 0xf0, 0x1a, 0x96, 0x0d, 0xf7, + 0x4c, 0xb6, 0xb4, 0x9b, 0x9e, 0x38, 0xe6, 0xb5 + } + }, + { 8, 8, 5, (unsigned char*)"password", + { + 0x12, 0x34, 0x56, 0x78, 0x78, 0x56, 0x34, 0x12 + }, + { + 0xd1, 0xda, 0xa7, 0x86, 0x15, 0xf2, 0x87, 0xe6, + 0xa1, 0xc8, 0xb1, 0x20, 0xd7, 0x06, 0x2a, 0x49 + } + }, + { 8, 21, 1, (unsigned char*)"password", + { + "ATHENA.MIT.EDUraeburn" + }, + { + 0xcd, 0xed, 0xb5, 0x28, 0x1b, 0xb2, 0xf8, 0x01, + 0x56, 0x5a, 0x11, 0x22, 0xb2, 0x56, 0x35, 0x15 + } + }, + { 8, 21, 2, (unsigned char*)"password", + { + "ATHENA.MIT.EDUraeburn" + }, + { + 0x01, 0xdb, 0xee, 0x7f, 0x4a, 0x9e, 0x24, 0x3e, + 0x98, 0x8b, 0x62, 0xc7, 0x3c, 0xda, 0x93, 0x5d + } + }, + { 8, 21, 1200, (unsigned char*)"password", + { + "ATHENA.MIT.EDUraeburn" + }, + { + 0x5c, 0x08, 0xeb, 0x61, 0xfd, 0xf7, 0x1e, 0x4e, + 0x4e, 0xc3, 0xcf, 0x6b, 0xa1, 0xf5, 0x51, 0x2b + } + } +}; + +int main() +{ unsigned int i, j, key_len = 256; + unsigned char key[256]; + + printf("\nTest of RFC2898 Password Based Key Derivation"); + for(i = 0; i < 5; ++i) + { + derive_key(tests[i].pwd, tests[i].pwd_len, tests[i].salt, + tests[i].salt_len, tests[i].it_count, key, key_len); + + printf("\ntest %i: ", i + 1); + printf("key %s", memcmp(tests[i].key, key, 16) ? "is bad" : "is good"); + for(j = 0; j < key_len && j < 64; j += 4) + { + if(j % 16 == 0) + printf("\n"); + printf("0x%02x%02x%02x%02x ", key[j], key[j + 1], key[j + 2], key[j + 3]); + } + printf(j < key_len ? " ... \n" : "\n"); + } + printf("\n"); + return 0; +} + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.h b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.h new file mode 100644 index 00000000..d95a5b9f --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/pwd2key.h @@ -0,0 +1,57 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 26/08/2003 + + This is an implementation of RFC2898, which specifies key derivation from + a password and a salt value. +*/ + +#ifndef PWD2KEY_H +#define PWD2KEY_H + +#if defined(__cplusplus) +extern "C" +{ +#endif + +void derive_key( + const unsigned char pwd[], /* the PASSWORD, and */ + unsigned int pwd_len, /* its length */ + const unsigned char salt[], /* the SALT and its */ + unsigned int salt_len, /* length */ + unsigned int iter, /* the number of iterations */ + unsigned char key[], /* space for the output key */ + unsigned int key_len); /* and its required length */ + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.c b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.c new file mode 100644 index 00000000..bb547428 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.c @@ -0,0 +1,258 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 + + This is a byte oriented version of SHA1 that operates on arrays of bytes + stored in memory. +*/ + +#include /* for memcpy() etc. */ + +#include "sha1.h" +#include "brg_endian.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) +#pragma intrinsic(memcpy) +#endif + +#if 0 && defined(_MSC_VER) +#define rotl32 _lrotl +#define rotr32 _lrotr +#else +#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) +#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n))) +#endif + +#if !defined(bswap_32) +#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00)) +#endif + +#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) +#define SWAP_BYTES +#else +#undef SWAP_BYTES +#endif + +#if defined(SWAP_BYTES) +#define bsw_32(p,n) \ + { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } +#else +#define bsw_32(p,n) +#endif + +#define SHA1_MASK (SHA1_BLOCK_SIZE - 1) + +#if 0 + +#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) +#define parity(x,y,z) ((x) ^ (y) ^ (z)) +#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +#else /* Discovered by Rich Schroeppel and Colin Plumb */ + +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define parity(x,y,z) ((x) ^ (y) ^ (z)) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) + +#endif + +/* Compile 64 bytes of hash data into SHA1 context. Note */ +/* that this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is in such an order that low */ +/* address bytes in the ORIGINAL byte stream will go in */ +/* this buffer to the high end of 32-bit words on BOTH big */ +/* and little endian systems */ + +#ifdef ARRAY +#define q(v,n) v[n] +#else +#define q(v,n) v##n +#endif + +#define one_cycle(v,a,b,c,d,e,f,k,h) \ + q(v,e) += rotr32(q(v,a),27) + \ + f(q(v,b),q(v,c),q(v,d)) + k + h; \ + q(v,b) = rotr32(q(v,b), 2) + +#define five_cycle(v,f,k,i) \ + one_cycle(v, 0,1,2,3,4, f,k,hf(i )); \ + one_cycle(v, 4,0,1,2,3, f,k,hf(i+1)); \ + one_cycle(v, 3,4,0,1,2, f,k,hf(i+2)); \ + one_cycle(v, 2,3,4,0,1, f,k,hf(i+3)); \ + one_cycle(v, 1,2,3,4,0, f,k,hf(i+4)) + +VOID_RETURN sha1_compile(sha1_ctx ctx[1]) +{ uint_32t *w = ctx->wbuf; + +#ifdef ARRAY + uint_32t v[5]; + memcpy(v, ctx->hash, 5 * sizeof(uint_32t)); +#else + uint_32t v0, v1, v2, v3, v4; + v0 = ctx->hash[0]; v1 = ctx->hash[1]; + v2 = ctx->hash[2]; v3 = ctx->hash[3]; + v4 = ctx->hash[4]; +#endif + +#define hf(i) w[i] + + five_cycle(v, ch, 0x5a827999, 0); + five_cycle(v, ch, 0x5a827999, 5); + five_cycle(v, ch, 0x5a827999, 10); + one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \ + +#undef hf +#define hf(i) (w[(i) & 15] = rotl32( \ + w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \ + ^ w[((i) + 2) & 15] ^ w[(i) & 15], 1)) + + one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16)); + one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17)); + one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18)); + one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19)); + + five_cycle(v, parity, 0x6ed9eba1, 20); + five_cycle(v, parity, 0x6ed9eba1, 25); + five_cycle(v, parity, 0x6ed9eba1, 30); + five_cycle(v, parity, 0x6ed9eba1, 35); + + five_cycle(v, maj, 0x8f1bbcdc, 40); + five_cycle(v, maj, 0x8f1bbcdc, 45); + five_cycle(v, maj, 0x8f1bbcdc, 50); + five_cycle(v, maj, 0x8f1bbcdc, 55); + + five_cycle(v, parity, 0xca62c1d6, 60); + five_cycle(v, parity, 0xca62c1d6, 65); + five_cycle(v, parity, 0xca62c1d6, 70); + five_cycle(v, parity, 0xca62c1d6, 75); + +#ifdef ARRAY + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; +#else + ctx->hash[0] += v0; ctx->hash[1] += v1; + ctx->hash[2] += v2; ctx->hash[3] += v3; + ctx->hash[4] += v4; +#endif +} + +VOID_RETURN sha1_begin(sha1_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + ctx->hash[0] = 0x67452301; + ctx->hash[1] = 0xefcdab89; + ctx->hash[2] = 0x98badcfe; + ctx->hash[3] = 0x10325476; + ctx->hash[4] = 0xc3d2e1f0; +} + +/* SHA1 hash data in an array of bytes into hash buffer and */ +/* call the hash_compile function as required. */ + +VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA1_MASK), + space = SHA1_BLOCK_SIZE - pos; + const unsigned char *sp = data; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + while(len >= space) /* tranfer whole blocks if possible */ + { + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); + sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0; + bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2); + sha1_compile(ctx); + } + + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); +} + +/* SHA1 final padding and digest calculation */ + +VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]) +{ uint_32t i = (uint_32t)(ctx->count[0] & SHA1_MASK); + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_32(ctx->wbuf, (i + 3) >> 2); + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3); + ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3); + + /* we need 9 or more empty positions, one for the padding byte */ + /* (above) and eight for the length count. If there is not */ + /* enough space, pad and empty the buffer */ + if(i > SHA1_BLOCK_SIZE - 9) + { + if(i < 60) ctx->wbuf[15] = 0; + sha1_compile(ctx); + i = 0; + } + else /* compute a word index for the empty buffer positions */ + i = (i >> 2) + 1; + + while(i < 14) /* and zero pad all but last two positions */ + ctx->wbuf[i++] = 0; + + /* the following 32-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 32-bit */ + /* word values. */ + ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29); + ctx->wbuf[15] = ctx->count[0] << 3; + sha1_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* misaligned for 32-bit words */ + for(i = 0; i < SHA1_DIGEST_SIZE; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); +} + +VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha1_ctx cx[1]; + + sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx); +} + +#if defined(__cplusplus) +} +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.h b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.h new file mode 100644 index 00000000..65ee6d39 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1.h @@ -0,0 +1,73 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 +*/ + +#ifndef _SHA1_H +#define _SHA1_H + +#include +#include "brg_types.h" + +#define SHA1_BLOCK_SIZE 64 +#define SHA1_DIGEST_SIZE 20 + +#if defined(__cplusplus) +extern "C" +{ +#endif + +/* type to hold the SHA256 context */ + +typedef struct +{ uint_32t count[2]; + uint_32t hash[5]; + uint_32t wbuf[16]; +} sha1_ctx; + +/* Note that these prototypes are the same for both bit and */ +/* byte oriented implementations. However the length fields */ +/* are in bytes or bits as appropriate for the version used */ +/* and bit sequences are input as arrays of bytes in which */ +/* bit sequences run from the most to the least significant */ +/* end of each byte */ + +VOID_RETURN sha1_compile(sha1_ctx ctx[1]); + +VOID_RETURN sha1_begin(sha1_ctx ctx[1]); +VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]); +VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]); +VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len); + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1b.c b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1b.c new file mode 100644 index 00000000..2063af60 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha1b.c @@ -0,0 +1,287 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 + + This is a bit oriented version of SHA1 that operates on arrays of bytes + stored in memory. +*/ + +#include /* for memcpy() etc. */ + +#include "sha1.h" +#include "brg_endian.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) +#pragma intrinsic(memcpy) +#endif + +#if 0 && defined(_MSC_VER) +#define rotl32 _lrotl +#define rotr32 _lrotr +#else +#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) +#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n))) +#endif + +#if !defined(bswap_32) +#define bswap_32(x) (rotr32((x), 24) & 0x00ff00ff | rotr32((x), 8) & 0xff00ff00) +#endif + +#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) +#define SWAP_BYTES +#else +#undef SWAP_BYTES +#endif + +#if defined(SWAP_BYTES) +#define bsw_32(p,n) \ + { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } +#else +#define bsw_32(p,n) +#endif + +#define SHA1_MASK (SHA1_BLOCK_SIZE - 1) + +#if 0 + +#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) +#define parity(x,y,z) ((x) ^ (y) ^ (z)) +#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +#else /* Discovered by Rich Schroeppel and Colin Plumb */ + +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define parity(x,y,z) ((x) ^ (y) ^ (z)) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) + +#endif + +/* Compile 64 bytes of hash data into SHA1 context. Note */ +/* that this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is in such an order that low */ +/* address bytes in the ORIGINAL byte stream in this buffer */ +/* will go to the high end of 32-bit words on BOTH big and */ +/* little endian systems */ + +#ifdef ARRAY +#define q(n) v[n] +#else +#define q(n) v##n +#endif + +#define one_cycle(a,b,c,d,e,f,k,h) \ + q(e) += rotr32(q(a),27) + f(q(b),q(c),q(d)) + k + h;\ + q(b) = rotr32(q(b), 2) + +#define five_cycle(f,k,i) \ + one_cycle(0,1,2,3,4, f,k,hf(i )); \ + one_cycle(4,0,1,2,3, f,k,hf(i+1)); \ + one_cycle(3,4,0,1,2, f,k,hf(i+2)); \ + one_cycle(2,3,4,0,1, f,k,hf(i+3)); \ + one_cycle(1,2,3,4,0, f,k,hf(i+4)) + +VOID_RETURN sha1_compile(sha1_ctx ctx[1]) +{ uint_32t *w = ctx->wbuf; + +#ifdef ARRAY + uint_32t v[5]; + memcpy(v, ctx->hash, 5 * sizeof(uint_32t)); +#else + uint_32t v0, v1, v2, v3, v4; + v0 = ctx->hash[0]; v1 = ctx->hash[1]; + v2 = ctx->hash[2]; v3 = ctx->hash[3]; + v4 = ctx->hash[4]; +#endif + +#define hf(i) w[i] + + five_cycle(ch, 0x5a827999, 0); + five_cycle(ch, 0x5a827999, 5); + five_cycle(ch, 0x5a827999, 10); + one_cycle(0,1,2,3,4, ch, 0x5a827999, hf(15)); \ + +#undef hf +#define hf(i) \ + (w[(i) & 15] = rotl32(w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \ + ^ w[((i) + 2) & 15] ^ w[(i) & 15], 1)) + + one_cycle(4,0,1,2,3, ch, 0x5a827999, hf(16)); + one_cycle(3,4,0,1,2, ch, 0x5a827999, hf(17)); + one_cycle(2,3,4,0,1, ch, 0x5a827999, hf(18)); + one_cycle(1,2,3,4,0, ch, 0x5a827999, hf(19)); + + five_cycle(parity, 0x6ed9eba1, 20); + five_cycle(parity, 0x6ed9eba1, 25); + five_cycle(parity, 0x6ed9eba1, 30); + five_cycle(parity, 0x6ed9eba1, 35); + + five_cycle(maj, 0x8f1bbcdc, 40); + five_cycle(maj, 0x8f1bbcdc, 45); + five_cycle(maj, 0x8f1bbcdc, 50); + five_cycle(maj, 0x8f1bbcdc, 55); + + five_cycle(parity, 0xca62c1d6, 60); + five_cycle(parity, 0xca62c1d6, 65); + five_cycle(parity, 0xca62c1d6, 70); + five_cycle(parity, 0xca62c1d6, 75); + +#ifdef ARRAY + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; +#else + ctx->hash[0] += v0; ctx->hash[1] += v1; + ctx->hash[2] += v2; ctx->hash[3] += v3; + ctx->hash[4] += v4; +#endif +} + +VOID_RETURN sha1_begin(sha1_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + ctx->hash[0] = 0x67452301; + ctx->hash[1] = 0xefcdab89; + ctx->hash[2] = 0x98badcfe; + ctx->hash[3] = 0x10325476; + ctx->hash[4] = 0xc3d2e1f0; +} + +/* SHA1 hash data in an array of bytes into hash buffer and */ +/* call the hash_compile function as required. */ + +VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]) +{ uint_32t pos = (uint_32t)((ctx->count[0] >> 3) & SHA1_MASK), + ofs = (ctx->count[0] & 7); + const unsigned char *sp = data; + unsigned char *w = (unsigned char*)ctx->wbuf; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + if(ofs) /* if not on a byte boundary */ + { + if(ofs + len < 8) /* if no added bytes are needed */ + { + w[pos] |= (*sp >> ofs); + } + else /* otherwise and add bytes */ + { unsigned char part = w[pos]; + + while((int)(ofs + (len -= 8)) >= 0) + { + w[pos++] = part | (*sp >> ofs); + part = *sp++ << (8 - ofs); + if(pos == SHA1_BLOCK_SIZE) + { + bsw_32(w, SHA1_BLOCK_SIZE >> 2); + sha1_compile(ctx); pos = 0; + } + } + + w[pos] = part; + } + } + else /* data is byte aligned */ + { uint_32t space = SHA1_BLOCK_SIZE - pos; + + while((int)(len - 8 * space) >= 0) + { + len -= 8 * space; + memcpy(w + pos, sp, space); + sp += space; + space = SHA1_BLOCK_SIZE; + bsw_32(w, SHA1_BLOCK_SIZE >> 2); + sha1_compile(ctx); pos = 0; + } + memcpy(w + pos, sp, (len + 7) >> 3); + } +} + +/* SHA1 final padding and digest calculation */ + +VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]) +{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA1_MASK), m1; + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_32(ctx->wbuf, (i + 4) >> 2); + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + m1 = (unsigned char)0x80 >> (ctx->count[0] & 7); + ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3)); + ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3)); + + /* we need 9 or more empty positions, one for the padding byte */ + /* (above) and eight for the length count. If there is not */ + /* enough space, pad and empty the buffer */ + if(i > SHA1_BLOCK_SIZE - 9) + { + if(i < 60) ctx->wbuf[15] = 0; + sha1_compile(ctx); + i = 0; + } + else /* compute a word index for the empty buffer positions */ + i = (i >> 2) + 1; + + while(i < 14) /* and zero pad all but last two positions */ + ctx->wbuf[i++] = 0; + + /* the following 32-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 32-bit */ + /* word values. */ + ctx->wbuf[14] = ctx->count[1]; + ctx->wbuf[15] = ctx->count[0]; + sha1_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* misaligned for 32-bit words */ + for(i = 0; i < SHA1_DIGEST_SIZE; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); +} + +VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha1_ctx cx[1]; + + sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx); +} + +#if defined(__cplusplus) +} +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.c b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.c new file mode 100644 index 00000000..c711a5f3 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.c @@ -0,0 +1,772 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 + + This is a byte oriented version of SHA2 that operates on arrays of bytes + stored in memory. This code implements sha256, sha384 and sha512 but the + latter two functions rely on efficient 64-bit integer operations that + may not be very efficient on 32-bit machines + + The sha256 functions use a type 'sha256_ctx' to hold details of the + current hash state and uses the following three calls: + + void sha256_begin(sha256_ctx ctx[1]) + void sha256_hash(const unsigned char data[], + unsigned long len, sha256_ctx ctx[1]) + void sha_end1(unsigned char hval[], sha256_ctx ctx[1]) + + The first subroutine initialises a hash computation by setting up the + context in the sha256_ctx context. The second subroutine hashes 8-bit + bytes from array data[] into the hash state withinh sha256_ctx context, + the number of bytes to be hashed being given by the the unsigned long + integer len. The third subroutine completes the hash calculation and + places the resulting digest value in the array of 8-bit bytes hval[]. + + The sha384 and sha512 functions are similar and use the interfaces: + + void sha384_begin(sha384_ctx ctx[1]); + void sha384_hash(const unsigned char data[], + unsigned long len, sha384_ctx ctx[1]); + void sha384_end(unsigned char hval[], sha384_ctx ctx[1]); + + void sha512_begin(sha512_ctx ctx[1]); + void sha512_hash(const unsigned char data[], + unsigned long len, sha512_ctx ctx[1]); + void sha512_end(unsigned char hval[], sha512_ctx ctx[1]); + + In addition there is a function sha2 that can be used to call all these + functions using a call with a hash length parameter as follows: + + int sha2_begin(unsigned long len, sha2_ctx ctx[1]); + void sha2_hash(const unsigned char data[], + unsigned long len, sha2_ctx ctx[1]); + void sha2_end(unsigned char hval[], sha2_ctx ctx[1]); + + My thanks to Erik Andersen for testing this code + on big-endian systems and for his assistance with corrections +*/ + +#if 0 +#define UNROLL_SHA2 /* for SHA2 loop unroll */ +#endif + +#include /* for memcpy() etc. */ + +#include "sha2.h" +#include "brg_endian.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) +#pragma intrinsic(memcpy) +#endif + +#if 0 && defined(_MSC_VER) +#define rotl32 _lrotl +#define rotr32 _lrotr +#else +#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) +#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n))) +#endif + +#if !defined(bswap_32) +#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00)) +#endif + +#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) +#define SWAP_BYTES +#else +#undef SWAP_BYTES +#endif + +#if 0 + +#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) +#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */ + +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) + +#endif + +/* round transforms for SHA256 and SHA512 compression functions */ + +#define vf(n,i) v[(n - i) & 7] + +#define hf(i) (p[i & 15] += \ + g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15])) + +#define v_cycle(i,j) \ + vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \ + + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \ + vf(3,i) += vf(7,i); \ + vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i)) + +#if defined(SHA_224) || defined(SHA_256) + +#define SHA256_MASK (SHA256_BLOCK_SIZE - 1) + +#if defined(SWAP_BYTES) +#define bsw_32(p,n) \ + { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } +#else +#define bsw_32(p,n) +#endif + +#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) +#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) +#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) +#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) +#define k_0 k256 + +/* rotated SHA256 round definition. Rather than swapping variables as in */ +/* FIPS-180, different variables are 'rotated' on each round, returning */ +/* to their starting positions every eight rounds */ + +#define q(n) v##n + +#define one_cycle(a,b,c,d,e,f,g,h,k,w) \ + q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \ + q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c)) + +/* SHA256 mixing data */ + +const uint_32t k256[64] = +{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, + 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, + 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, + 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, + 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, + 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, + 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, + 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, + 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, + 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, + 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, + 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, + 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, + 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, + 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, + 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul, +}; + +/* Compile 64 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha256_compile(sha256_ctx ctx[1]) +{ +#if !defined(UNROLL_SHA2) + + uint_32t j, *p = ctx->wbuf, v[8]; + + memcpy(v, ctx->hash, 8 * sizeof(uint_32t)); + + for(j = 0; j < 64; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; + +#else + + uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7; + + v0 = ctx->hash[0]; v1 = ctx->hash[1]; + v2 = ctx->hash[2]; v3 = ctx->hash[3]; + v4 = ctx->hash[4]; v5 = ctx->hash[5]; + v6 = ctx->hash[6]; v7 = ctx->hash[7]; + + one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]); + one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]); + one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]); + one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]); + one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]); + one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]); + one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]); + one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]); + one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]); + one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]); + one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]); + one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]); + one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]); + one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]); + + one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15)); + + ctx->hash[0] += v0; ctx->hash[1] += v1; + ctx->hash[2] += v2; ctx->hash[3] += v3; + ctx->hash[4] += v4; ctx->hash[5] += v5; + ctx->hash[6] += v6; ctx->hash[7] += v7; +#endif +} + +/* SHA256 hash data in an array of bytes into hash buffer */ +/* and call the hash_compile function as required. */ + +VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK), + space = SHA256_BLOCK_SIZE - pos; + const unsigned char *sp = data; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + while(len >= space) /* tranfer whole blocks while possible */ + { + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); + sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0; + bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2) + sha256_compile(ctx); + } + + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); +} + +/* SHA256 Final padding and digest calculation */ + +static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK); + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_32(ctx->wbuf, (i + 3) >> 2) + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3); + ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3); + + /* we need 9 or more empty positions, one for the padding byte */ + /* (above) and eight for the length count. If there is not */ + /* enough space pad and empty the buffer */ + if(i > SHA256_BLOCK_SIZE - 9) + { + if(i < 60) ctx->wbuf[15] = 0; + sha256_compile(ctx); + i = 0; + } + else /* compute a word index for the empty buffer positions */ + i = (i >> 2) + 1; + + while(i < 14) /* and zero pad all but last two positions */ + ctx->wbuf[i++] = 0; + + /* the following 32-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 32-bit */ + /* word values. */ + ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29); + ctx->wbuf[15] = ctx->count[0] << 3; + sha256_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* mislaigned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); +} + +#endif + +#if defined(SHA_224) + +const uint_32t i224[8] = +{ + 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul, + 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul +}; + +VOID_RETURN sha224_begin(sha224_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i224, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA224_DIGEST_SIZE); +} + +VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha224_ctx cx[1]; + + sha224_begin(cx); + sha224_hash(data, len, cx); + sha_end1(hval, cx, SHA224_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_256) + +const uint_32t i256[8] = +{ + 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, + 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul +}; + +VOID_RETURN sha256_begin(sha256_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i256, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA256_DIGEST_SIZE); +} + +VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha256_ctx cx[1]; + + sha256_begin(cx); + sha256_hash(data, len, cx); + sha_end1(hval, cx, SHA256_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_384) || defined(SHA_512) + +#define SHA512_MASK (SHA512_BLOCK_SIZE - 1) + +#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n))) + +#if !defined(bswap_64) +#define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32))) +#endif + +#if defined(SWAP_BYTES) +#define bsw_64(p,n) \ + { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); } +#else +#define bsw_64(p,n) +#endif + +/* SHA512 mixing function definitions */ + +#ifdef s_0 +# undef s_0 +# undef s_1 +# undef g_0 +# undef g_1 +# undef k_0 +#endif + +#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) +#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) +#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) +#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) +#define k_0 k512 + +/* SHA384/SHA512 mixing data */ + +const uint_64t k512[80] = +{ + li_64(428a2f98d728ae22), li_64(7137449123ef65cd), + li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc), + li_64(3956c25bf348b538), li_64(59f111f1b605d019), + li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118), + li_64(d807aa98a3030242), li_64(12835b0145706fbe), + li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2), + li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1), + li_64(9bdc06a725c71235), li_64(c19bf174cf692694), + li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3), + li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65), + li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483), + li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5), + li_64(983e5152ee66dfab), li_64(a831c66d2db43210), + li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4), + li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725), + li_64(06ca6351e003826f), li_64(142929670a0e6e70), + li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926), + li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df), + li_64(650a73548baf63de), li_64(766a0abb3c77b2a8), + li_64(81c2c92e47edaee6), li_64(92722c851482353b), + li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001), + li_64(c24b8b70d0f89791), li_64(c76c51a30654be30), + li_64(d192e819d6ef5218), li_64(d69906245565a910), + li_64(f40e35855771202a), li_64(106aa07032bbd1b8), + li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53), + li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8), + li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb), + li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3), + li_64(748f82ee5defb2fc), li_64(78a5636f43172f60), + li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec), + li_64(90befffa23631e28), li_64(a4506cebde82bde9), + li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b), + li_64(ca273eceea26619c), li_64(d186b8c721c0c207), + li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178), + li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6), + li_64(113f9804bef90dae), li_64(1b710b35131c471b), + li_64(28db77f523047d84), li_64(32caab7b40c72493), + li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c), + li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a), + li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817) +}; + +/* Compile 128 bytes of hash data into SHA384/512 digest */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha512_compile(sha512_ctx ctx[1]) +{ uint_64t v[8], *p = ctx->wbuf; + uint_32t j; + + memcpy(v, ctx->hash, 8 * sizeof(uint_64t)); + + for(j = 0; j < 80; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; +} + +/* Compile 128 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is in such an order that low */ +/* address bytes in the ORIGINAL byte stream placed in this */ +/* buffer will now go to the high end of words on BOTH big */ +/* and little endian systems */ + +VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK), + space = SHA512_BLOCK_SIZE - pos; + const unsigned char *sp = data; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + while(len >= space) /* tranfer whole blocks while possible */ + { + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); + sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0; + bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3); + sha512_compile(ctx); + } + + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); +} + +/* SHA384/512 Final padding and digest calculation */ + +static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK); + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_64(ctx->wbuf, (i + 7) >> 3); + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7); + ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7); + + /* we need 17 or more empty byte positions, one for the padding */ + /* byte (above) and sixteen for the length count. If there is */ + /* not enough space pad and empty the buffer */ + if(i > SHA512_BLOCK_SIZE - 17) + { + if(i < 120) ctx->wbuf[15] = 0; + sha512_compile(ctx); + i = 0; + } + else + i = (i >> 3) + 1; + + while(i < 14) + ctx->wbuf[i++] = 0; + + /* the following 64-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 64-bit */ + /* word values. */ + ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61); + ctx->wbuf[15] = ctx->count[0] << 3; + sha512_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* misaligned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7))); +} + +#endif + +#if defined(SHA_384) + +/* SHA384 initialisation data */ + +const uint_64t i384[80] = +{ + li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507), + li_64(9159015a3070dd17), li_64(152fecd8f70e5939), + li_64(67332667ffc00b31), li_64(8eb44a8768581511), + li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4) +}; + +VOID_RETURN sha384_begin(sha384_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i384, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA384_DIGEST_SIZE); +} + +VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha384_ctx cx[1]; + + sha384_begin(cx); + sha384_hash(data, len, cx); + sha_end2(hval, cx, SHA384_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_512) + +/* SHA512 initialisation data */ + +const uint_64t i512[80] = +{ + li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b), + li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1), + li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f), + li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179) +}; + +VOID_RETURN sha512_begin(sha512_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i512, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA512_DIGEST_SIZE); +} + +VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha512_ctx cx[1]; + + sha512_begin(cx); + sha512_hash(data, len, cx); + sha_end2(hval, cx, SHA512_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_2) + +#define CTX_224(x) ((x)->uu->ctx256) +#define CTX_256(x) ((x)->uu->ctx256) +#define CTX_384(x) ((x)->uu->ctx512) +#define CTX_512(x) ((x)->uu->ctx512) + +/* SHA2 initialisation */ + +INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1]) +{ + switch(len) + { +#if defined(SHA_224) + case 224: + case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i224, 32); + ctx->sha2_len = 28; return EXIT_SUCCESS; +#endif +#if defined(SHA_256) + case 256: + case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i256, 32); + ctx->sha2_len = 32; return EXIT_SUCCESS; +#endif +#if defined(SHA_384) + case 384: + case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0; + memcpy(CTX_384(ctx)->hash, i384, 64); + ctx->sha2_len = 48; return EXIT_SUCCESS; +#endif +#if defined(SHA_512) + case 512: + case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0; + memcpy(CTX_512(ctx)->hash, i512, 64); + ctx->sha2_len = 64; return EXIT_SUCCESS; +#endif + default: return EXIT_FAILURE; + } +} + +VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha224_hash(data, len, CTX_224(ctx)); return; +#endif +#if defined(SHA_256) + case 32: sha256_hash(data, len, CTX_256(ctx)); return; +#endif +#if defined(SHA_384) + case 48: sha384_hash(data, len, CTX_384(ctx)); return; +#endif +#if defined(SHA_512) + case 64: sha512_hash(data, len, CTX_512(ctx)); return; +#endif + } +} + +VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return; +#endif +#if defined(SHA_256) + case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return; +#endif +#if defined(SHA_384) + case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return; +#endif +#if defined(SHA_512) + case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return; +#endif + } +} + +INT_RETURN sha2(unsigned char hval[], unsigned long size, + const unsigned char data[], unsigned long len) +{ sha2_ctx cx[1]; + + if(sha2_begin(size, cx) == EXIT_SUCCESS) + { + sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS; + } + else + return EXIT_FAILURE; +} + +#endif + +#if defined(__cplusplus) +} +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.h b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.h new file mode 100644 index 00000000..6ab8907c --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2.h @@ -0,0 +1,151 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 +*/ + +#ifndef _SHA2_H +#define _SHA2_H + +#include + +#define SHA_64BIT + +/* define the hash functions that you need */ +#define SHA_2 /* for dynamic hash length */ +#define SHA_224 +#define SHA_256 +#ifdef SHA_64BIT +# define SHA_384 +# define SHA_512 +# define NEED_UINT_64T +#endif + +#include "brg_types.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +/* Note that the following function prototypes are the same */ +/* for both the bit and byte oriented implementations. But */ +/* the length fields are in bytes or bits as is appropriate */ +/* for the version used. Bit sequences are arrays of bytes */ +/* in which bit sequence indexes increase from the most to */ +/* the least significant end of each byte */ + +#define SHA224_DIGEST_SIZE 28 +#define SHA224_BLOCK_SIZE 64 +#define SHA256_DIGEST_SIZE 32 +#define SHA256_BLOCK_SIZE 64 + +/* type to hold the SHA256 (and SHA224) context */ + +typedef struct +{ uint_32t count[2]; + uint_32t hash[8]; + uint_32t wbuf[16]; +} sha256_ctx; + +typedef sha256_ctx sha224_ctx; + +VOID_RETURN sha256_compile(sha256_ctx ctx[1]); + +VOID_RETURN sha224_begin(sha224_ctx ctx[1]); +#define sha224_hash sha256_hash +VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]); +VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len); + +VOID_RETURN sha256_begin(sha256_ctx ctx[1]); +VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]); +VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]); +VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len); + +#ifndef SHA_64BIT + +typedef struct +{ union + { sha256_ctx ctx256[1]; + } uu[1]; + uint_32t sha2_len; +} sha2_ctx; + +#define SHA2_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE + +#else + +#define SHA384_DIGEST_SIZE 48 +#define SHA384_BLOCK_SIZE 128 +#define SHA512_DIGEST_SIZE 64 +#define SHA512_BLOCK_SIZE 128 +#define SHA2_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE + +/* type to hold the SHA384 (and SHA512) context */ + +typedef struct +{ uint_64t count[2]; + uint_64t hash[8]; + uint_64t wbuf[16]; +} sha512_ctx; + +typedef sha512_ctx sha384_ctx; + +typedef struct +{ union + { sha256_ctx ctx256[1]; + sha512_ctx ctx512[1]; + } uu[1]; + uint_32t sha2_len; +} sha2_ctx; + +VOID_RETURN sha512_compile(sha512_ctx ctx[1]); + +VOID_RETURN sha384_begin(sha384_ctx ctx[1]); +#define sha384_hash sha512_hash +VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]); +VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len); + +VOID_RETURN sha512_begin(sha512_ctx ctx[1]); +VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]); +VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]); +VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len); + +INT_RETURN sha2_begin(unsigned long size, sha2_ctx ctx[1]); +VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]); +VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]); +INT_RETURN sha2(unsigned char hval[], unsigned long size, const unsigned char data[], unsigned long len); + +#endif + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2b.c b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2b.c new file mode 100644 index 00000000..e0aafc93 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/sha2b.c @@ -0,0 +1,833 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 + + This is a bit oriented version of SHA2 that operates on arrays of bytes + stored in memory. This code implements sha256, sha384 and sha512 but the + latter two functions rely on efficient 64-bit integer operations that + may not be very efficient on 32-bit machines + + The sha256 functions use a type 'sha256_ctx' to hold details of the + current hash state and uses the following three calls: + + void sha256_begin(sha256_ctx ctx[1]) + void sha256_hash(const unsigned char data[], + unsigned long len, sha256_ctx ctx[1]) + void sha_end1(unsigned char hval[], sha256_ctx ctx[1]) + + The first subroutine initialises a hash computation by setting up the + context in the sha256_ctx context. The second subroutine hashes 8-bit + bytes from array data[] into the hash state withinh sha256_ctx context, + the number of bytes to be hashed being given by the the unsigned long + integer len. The third subroutine completes the hash calculation and + places the resulting digest value in the array of 8-bit bytes hval[]. + + The sha384 and sha512 functions are similar and use the interfaces: + + void sha384_begin(sha384_ctx ctx[1]); + void sha384_hash(const unsigned char data[], + unsigned long len, sha384_ctx ctx[1]); + void sha384_end(unsigned char hval[], sha384_ctx ctx[1]); + + void sha512_begin(sha512_ctx ctx[1]); + void sha512_hash(const unsigned char data[], + unsigned long len, sha512_ctx ctx[1]); + void sha512_end(unsigned char hval[], sha512_ctx ctx[1]); + + In addition there is a function sha2 that can be used to call all these + functions using a call with a hash length parameter as follows: + + int sha2_begin(unsigned long len, sha2_ctx ctx[1]); + void sha2_hash(const unsigned char data[], + unsigned long len, sha2_ctx ctx[1]); + void sha2_end(unsigned char hval[], sha2_ctx ctx[1]); + + My thanks to Erik Andersen for testing this code + on big-endian systems and for his assistance with corrections +*/ + +#if 1 +#define UNROLL_SHA2 /* for SHA2 loop unroll */ +#endif + +#include /* for memcpy() etc. */ + +#include "sha2.h" +#include "brg_endian.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) +#pragma intrinsic(memcpy) +#endif + +#if 0 && defined(_MSC_VER) +#define rotl32 _lrotl +#define rotr32 _lrotr +#else +#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) +#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n))) +#endif + +#if !defined(bswap_32) +#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00)) +#endif + +#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) +#define SWAP_BYTES +#else +#undef SWAP_BYTES +#endif + +#if 0 + +#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) +#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */ + +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) + +#endif + +/* round transforms for SHA256 and SHA512 compression functions */ + +#define vf(n,i) v[(n - i) & 7] + +#define hf(i) (p[i & 15] += \ + g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15])) + +#define v_cycle(i,j) \ + vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \ + + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \ + vf(3,i) += vf(7,i); \ + vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i)) + +#if defined(SHA_224) || defined(SHA_256) + +#define SHA256_MASK (SHA256_BLOCK_SIZE - 1) + +#if defined(SWAP_BYTES) +#define bsw_32(p,n) \ + { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } +#else +#define bsw_32(p,n) +#endif + +#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) +#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) +#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) +#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) +#define k_0 k256 + +/* rotated SHA256 round definition. Rather than swapping variables as in */ +/* FIPS-180, different variables are 'rotated' on each round, returning */ +/* to their starting positions every eight rounds */ + +#define q(n) v##n + +#define one_cycle(a,b,c,d,e,f,g,h,k,w) \ + q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \ + q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c)) + +/* SHA256 mixing data */ + +const uint_32t k256[64] = +{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, + 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, + 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, + 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, + 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, + 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, + 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, + 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, + 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, + 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, + 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, + 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, + 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, + 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, + 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, + 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul, +}; + +/* Compile 64 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha256_compile(sha256_ctx ctx[1]) +{ +#if !defined(UNROLL_SHA2) + + uint_32t j, *p = ctx->wbuf, v[8]; + + memcpy(v, ctx->hash, 8 * sizeof(uint_32t)); + + for(j = 0; j < 64; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; + +#else + + uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7; + + v0 = ctx->hash[0]; v1 = ctx->hash[1]; + v2 = ctx->hash[2]; v3 = ctx->hash[3]; + v4 = ctx->hash[4]; v5 = ctx->hash[5]; + v6 = ctx->hash[6]; v7 = ctx->hash[7]; + + one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]); + one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]); + one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]); + one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]); + one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]); + one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]); + one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]); + one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]); + one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]); + one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]); + one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]); + one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]); + one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]); + one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]); + + one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15)); + + ctx->hash[0] += v0; ctx->hash[1] += v1; + ctx->hash[2] += v2; ctx->hash[3] += v3; + ctx->hash[4] += v4; ctx->hash[5] += v5; + ctx->hash[6] += v6; ctx->hash[7] += v7; +#endif +} + +/* SHA256 hash data in an array of bytes into hash buffer */ +/* and call the hash_compile function as required. */ + +VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]) +{ uint_32t pos = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK), + ofs = (ctx->count[0] & 7); + const unsigned char *sp = data; + unsigned char *w = (unsigned char*)ctx->wbuf; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + if(ofs) /* if not on a byte boundary */ + { + if(ofs + len < 8) /* if no added bytes are needed */ + { + w[pos] |= (*sp >> ofs); + } + else /* otherwise and add bytes */ + { unsigned char part = w[pos]; + + while((int)(ofs + (len -= 8)) >= 0) + { + w[pos++] = part | (*sp >> ofs); + part = *sp++ << (8 - ofs); + if(pos == SHA256_BLOCK_SIZE) + { + bsw_32(w, SHA256_BLOCK_SIZE >> 2); + sha256_compile(ctx); pos = 0; + } + } + + w[pos] = part; + } + } + else /* data is byte aligned */ + { uint_32t space = SHA256_BLOCK_SIZE - pos; + + while((int)(len - 8 * space) >= 0) + { + len -= 8 * space; + memcpy(w + pos, sp, space); + sp += space; + space = SHA256_BLOCK_SIZE; + bsw_32(w, SHA256_BLOCK_SIZE >> 2); + sha256_compile(ctx); pos = 0; + } + memcpy(w + pos, sp, (len + 7) >> 3); + } +} + +/* SHA256 Final padding and digest calculation */ + +static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK), m1; + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_32(ctx->wbuf, (i + 4) >> 2) + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + m1 = (unsigned char)0x80 >> (ctx->count[0] & 7); + ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3)); + ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3)); + + /* we need 9 or more empty positions, one for the padding byte */ + /* (above) and eight for the length count. If there is not */ + /* enough space pad and empty the buffer */ + if(i > SHA256_BLOCK_SIZE - 9) + { + if(i < 60) ctx->wbuf[15] = 0; + sha256_compile(ctx); + i = 0; + } + else /* compute a word index for the empty buffer positions */ + i = (i >> 2) + 1; + + while(i < 14) /* and zero pad all but last two positions */ + ctx->wbuf[i++] = 0; + + /* the following 32-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 32-bit */ + /* word values. */ + ctx->wbuf[14] = ctx->count[1]; + ctx->wbuf[15] = ctx->count[0]; + sha256_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* mislaigned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); +} + +#endif + +#if defined(SHA_224) + +const uint_32t i224[8] = +{ + 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul, + 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul +}; + +VOID_RETURN sha224_begin(sha224_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i224, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA224_DIGEST_SIZE); +} + +VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha224_ctx cx[1]; + + sha224_begin(cx); + sha224_hash(data, len, cx); + sha_end1(hval, cx, SHA224_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_256) + +const uint_32t i256[8] = +{ + 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, + 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul +}; + +VOID_RETURN sha256_begin(sha256_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i256, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA256_DIGEST_SIZE); +} + +VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha256_ctx cx[1]; + + sha256_begin(cx); + sha256_hash(data, len, cx); + sha_end1(hval, cx, SHA256_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_384) || defined(SHA_512) + +#define SHA512_MASK (SHA512_BLOCK_SIZE - 1) + +#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n))) + +#if !defined(bswap_64) +#define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32))) +#endif + +#if defined(SWAP_BYTES) +#define bsw_64(p,n) \ + { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); } +#else +#define bsw_64(p,n) +#endif + +/* SHA512 mixing function definitions */ + +#ifdef s_0 +# undef s_0 +# undef s_1 +# undef g_0 +# undef g_1 +# undef k_0 +#endif + +#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) +#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) +#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) +#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) +#define k_0 k512 + +/* SHA384/SHA512 mixing data */ + +const uint_64t k512[80] = +{ + li_64(428a2f98d728ae22), li_64(7137449123ef65cd), + li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc), + li_64(3956c25bf348b538), li_64(59f111f1b605d019), + li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118), + li_64(d807aa98a3030242), li_64(12835b0145706fbe), + li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2), + li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1), + li_64(9bdc06a725c71235), li_64(c19bf174cf692694), + li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3), + li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65), + li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483), + li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5), + li_64(983e5152ee66dfab), li_64(a831c66d2db43210), + li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4), + li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725), + li_64(06ca6351e003826f), li_64(142929670a0e6e70), + li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926), + li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df), + li_64(650a73548baf63de), li_64(766a0abb3c77b2a8), + li_64(81c2c92e47edaee6), li_64(92722c851482353b), + li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001), + li_64(c24b8b70d0f89791), li_64(c76c51a30654be30), + li_64(d192e819d6ef5218), li_64(d69906245565a910), + li_64(f40e35855771202a), li_64(106aa07032bbd1b8), + li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53), + li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8), + li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb), + li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3), + li_64(748f82ee5defb2fc), li_64(78a5636f43172f60), + li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec), + li_64(90befffa23631e28), li_64(a4506cebde82bde9), + li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b), + li_64(ca273eceea26619c), li_64(d186b8c721c0c207), + li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178), + li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6), + li_64(113f9804bef90dae), li_64(1b710b35131c471b), + li_64(28db77f523047d84), li_64(32caab7b40c72493), + li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c), + li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a), + li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817) +}; + +/* Compile 128 bytes of hash data into SHA384/512 digest */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha512_compile(sha512_ctx ctx[1]) +{ uint_64t v[8], *p = ctx->wbuf; + uint_32t j; + + memcpy(v, ctx->hash, 8 * sizeof(uint_64t)); + + for(j = 0; j < 80; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; +} + +/* Compile 128 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is in such an order that low */ +/* address bytes in the ORIGINAL byte stream placed in this */ +/* buffer will now go to the high end of words on BOTH big */ +/* and little endian systems */ + +VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] >> 3) & SHA512_MASK, + ofs = (uint_32t)(ctx->count[0] & 7); + const unsigned char *sp = data; + unsigned char *w = (unsigned char*)ctx->wbuf; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + if(ofs) /* if not on a byte boundary */ + { + if(ofs + len < 8) /* if no added bytes are needed */ + { + w[pos] |= (*sp >> ofs); + } + else /* otherwise and add bytes */ + { unsigned char part = w[pos]; + + while((int)(ofs + (len -= 8)) >= 0) + { + w[pos++] = part | (*sp >> ofs); + part = *sp++ << (8 - ofs); + if(pos == SHA512_BLOCK_SIZE) + { + bsw_64(w, SHA512_BLOCK_SIZE >> 3); + sha512_compile(ctx); pos = 0; + } + } + + w[pos] = part; + } + } + else /* data is byte aligned */ + { uint_32t space = SHA512_BLOCK_SIZE - pos; + + while((int)(len - 8 * space) >= 0) + { + len -= 8 * space; + memcpy(w + pos, sp, space); + sp += space; + space = SHA512_BLOCK_SIZE; + bsw_64(w, SHA512_BLOCK_SIZE >> 3); + sha512_compile(ctx); pos = 0; + } + memcpy(w + pos, sp, (len + 7) >> 3); + } +} + +/* SHA384/512 Final padding and digest calculation */ + +static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA512_MASK); + uint_64t m1; + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_64(ctx->wbuf, (i + 8) >> 3); + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + m1 = (unsigned char)0x80 >> (ctx->count[0] & 7); + ctx->wbuf[i >> 3] &= ((li_64(ffffffffffffff00) | (~m1 + 1)) << 8 * (~i & 7)); + ctx->wbuf[i >> 3] |= (m1 << 8 * (~i & 7)); + + /* we need 17 or more empty byte positions, one for the padding */ + /* byte (above) and sixteen for the length count. If there is */ + /* not enough space pad and empty the buffer */ + if(i > SHA512_BLOCK_SIZE - 17) + { + if(i < 120) ctx->wbuf[15] = 0; + sha512_compile(ctx); + i = 0; + } + else + i = (i >> 3) + 1; + + while(i < 14) + ctx->wbuf[i++] = 0; + + /* the following 64-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 64-bit */ + /* word values. */ + ctx->wbuf[14] = ctx->count[1]; + ctx->wbuf[15] = ctx->count[0]; + sha512_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* misaligned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7))); +} + +#endif + +#if defined(SHA_384) + +/* SHA384 initialisation data */ + +const uint_64t i384[80] = +{ + li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507), + li_64(9159015a3070dd17), li_64(152fecd8f70e5939), + li_64(67332667ffc00b31), li_64(8eb44a8768581511), + li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4) +}; + +VOID_RETURN sha384_begin(sha384_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i384, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA384_DIGEST_SIZE); +} + +VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha384_ctx cx[1]; + + sha384_begin(cx); + sha384_hash(data, len, cx); + sha_end2(hval, cx, SHA384_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_512) + +/* SHA512 initialisation data */ + +const uint_64t i512[80] = +{ + li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b), + li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1), + li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f), + li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179) +}; + +VOID_RETURN sha512_begin(sha512_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i512, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA512_DIGEST_SIZE); +} + +VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha512_ctx cx[1]; + + sha512_begin(cx); + sha512_hash(data, len, cx); + sha_end2(hval, cx, SHA512_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_2) + +#define CTX_224(x) ((x)->uu->ctx256) +#define CTX_256(x) ((x)->uu->ctx256) +#define CTX_384(x) ((x)->uu->ctx512) +#define CTX_512(x) ((x)->uu->ctx512) + +/* SHA2 initialisation */ + +INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1]) +{ + switch(len) + { +#if defined(SHA_224) + case 224: + case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i224, 32); + ctx->sha2_len = 28; return EXIT_SUCCESS; +#endif +#if defined(SHA_256) + case 256: + case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i256, 32); + ctx->sha2_len = 32; return EXIT_SUCCESS; +#endif +#if defined(SHA_384) + case 384: + case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0; + memcpy(CTX_384(ctx)->hash, i384, 64); + ctx->sha2_len = 48; return EXIT_SUCCESS; +#endif +#if defined(SHA_512) + case 512: + case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0; + memcpy(CTX_512(ctx)->hash, i512, 64); + ctx->sha2_len = 64; return EXIT_SUCCESS; +#endif + default: return EXIT_FAILURE; + } +} + +VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha224_hash(data, len, CTX_224(ctx)); return; +#endif +#if defined(SHA_256) + case 32: sha256_hash(data, len, CTX_256(ctx)); return; +#endif +#if defined(SHA_384) + case 48: sha384_hash(data, len, CTX_384(ctx)); return; +#endif +#if defined(SHA_512) + case 64: sha512_hash(data, len, CTX_512(ctx)); return; +#endif + } +} + +VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return; +#endif +#if defined(SHA_256) + case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return; +#endif +#if defined(SHA_384) + case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return; +#endif +#if defined(SHA_512) + case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return; +#endif + } +} + +INT_RETURN sha2(unsigned char hval[], unsigned long size, + const unsigned char data[], unsigned long len) +{ sha2_ctx cx[1]; + + if(sha2_begin(size, cx) == EXIT_SUCCESS) + { + sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS; + } + else + return EXIT_FAILURE; +} + +#endif + +#if defined(__cplusplus) +} +#endif diff --git a/src/java/KP2AKdbLibrary/app/src/main/jni/sha/shasum.c b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/shasum.c new file mode 100644 index 00000000..b6a17512 --- /dev/null +++ b/src/java/KP2AKdbLibrary/app/src/main/jni/sha/shasum.c @@ -0,0 +1,62 @@ + +#include +#include +#include + +#include "sha2.h" + +#define BUF_SIZE 16384 + +int main(int argc, char *argv[]) +{ FILE *inf; + sha256_ctx ctx[1]; + unsigned char buf[BUF_SIZE], hval[SHA256_DIGEST_SIZE]; + int i, len, is_console; + + if(argc != 2) + { + printf("\nusage: shasum filename\n"); + exit(0); + } + + if(is_console = (!strcmp(argv[1], "con") || !strcmp(argv[1], "CON"))) + { + if(!(inf = fopen(argv[1], "r"))) + { + printf("\n%s not found\n", argv[1]); + exit(0); + } + } + else if(!(inf = fopen(argv[1], "rb"))) + { + printf("\n%s not found\n", argv[1]); + exit(0); + } + + sha256_begin(ctx); + do + { + len = (int)fread(buf, 1, BUF_SIZE, inf); + i = len; + if(is_console) + { + i = 0; + while(i < len && buf[i] != '\x1a') + ++i; + } + if(i) + sha256_hash(buf, i, ctx); + } + while + (len && i == len); + + fclose(inf); + sha256_end(hval, ctx); + + printf("\n"); + for(i = 0; i < SHA256_DIGEST_SIZE; ++i) + printf("%02x", hval[i]); + printf("\n"); + + return 0; +}