Files
SeaDiff/conf.yml
2025-06-15 17:30:34 +08:00

55 lines
2.6 KiB
YAML

# model
IMAGE_SIZE : [336, 336] # load image size, if it's train mode, it will be randomly cropped to IMAGE_SIZE. If it's test mode, it will be resized to IMAGE_SIZE.
CHANNEL_X : 3 # input channel
CHANNEL_Y : 3 # output channel
TIMESTEPS : 1000 # diffusion steps
SCHEDULE : 'linear' # linear or cosine
MODEL_CHANNELS : 32 # basic channels of Unet
NUM_RESBLOCKS : 1 # number of residual blocks
CHANNEL_MULT : [1,2,3,4] # channel multiplier of each layer
NUM_HEADS : 1
DPT_PRETRAINED_WEIGHT: ' ' # path of the pretrained weight of Depth Anything model
MODE : 1 # 1 Train, 0 Test
PRE_ORI : 'True' # if True, predict $x_0$, else predict $\epsilon$.
# train
PATH_IMG : ' ' # path of input
PATH_GT : ' ' # path of ground truth
PATH_GT_DEPTH : ' ' # path of depth
PATH_IMG_HIST: ' ' # path of histogram
BATCH_SIZE : 3 # training batch size
NUM_WORKERS : 0 # number of workers
ITERATION_MAX : 400000 # max training iteration
LR : 0.0001 # learning rate
LOSS : 'L2' # L1 or L2
EMA_EVERY : 100 # update EMA every EMA_EVERY iterations
START_EMA : 2000 # start EMA after START_EMA iterations
SAVE_MODEL_EVERY : 50000 # save model every SAVE_MODEL_EVERY iterations
EMA: 'False' # if True, use EMA
CONTINUE_TRAINING : 'False' # if True, continue training
CONTINUE_TRAINING_STEPS : # continue training from CONTINUE_TRAINING_STEPS
PRETRAINED_PATH_BETA_PREDICTOR: ' '
PRETRAINED_PATH_DEPTH_ESTIMATOR : ' '
PRETRAINED_PATH_DENOISER: ' '
WEIGHT_SAVE_PATH : ' ' # path to save model
TRAIN_PATH : ' ' # path of training data
BETA_LOSS : 50 # hyperparameter to balance the pixel loss and the diffusion loss
HIGH_LOW_FREQ : 'False' # if True, training with frequency separation
OUTPUT_DIR: ' '
# test
NATIVE_RESOLUTION : 'False' # if True, test with native resolution
DPM_SOLVER : 'False' # if True, test with DPM_solver
DPM_STEP : 20 # DPM_solver step
BATCH_SIZE_VAL : 1 # test batch size
PATH_TEST_IMG : ' ' # path of input
PATH_TEST_GT : ' ' # path of ground truth
PATH_TEST_GT_DEPTH : ' ' # path of depth
PATH_TEST_IMG_HIST: ' ' # path of histogram
TEST_PATH : ' ' # path to save results
VIS_PATH: ' ' # path to save results