Initial commit for SeaDiff project code

This commit is contained in:
Henry-Bi
2025-06-15 17:28:44 +08:00
parent b31cdfd067
commit a1c05872fe
170 changed files with 12855 additions and 0 deletions

54
conf.yml Normal file
View File

@@ -0,0 +1,54 @@
# model
IMAGE_SIZE : [336, 336] # load image size, if it's train mode, it will be randomly cropped to IMAGE_SIZE. If it's test mode, it will be resized to IMAGE_SIZE.
CHANNEL_X : 3 # input channel
CHANNEL_Y : 3 # output channel
TIMESTEPS : 1000 # diffusion steps
SCHEDULE : 'linear' # linear or cosine
MODEL_CHANNELS : 32 # basic channels of Unet
NUM_RESBLOCKS : 1 # number of residual blocks
CHANNEL_MULT : [1,2,3,4] # channel multiplier of each layer
NUM_HEADS : 1
DPT_PRETRAINED_WEIGHT: ' ' # path of the pretrained weight of Depth Anything model
MODE : 1 # 1 Train, 0 Test
PRE_ORI : 'True' # if True, predict $x_0$, else predict $\epsilon$.
# train
PATH_IMG : ' ' # path of input
PATH_GT : ' ' # path of ground truth
PATH_GT_DEPTH : ' ' # path of depth
PATH_IMG_HIST: ' ' # path of histogram
BATCH_SIZE : 3 # training batch size
NUM_WORKERS : 0 # number of workers
ITERATION_MAX : 400000 # max training iteration
LR : 0.0001 # learning rate
LOSS : 'L2' # L1 or L2
EMA_EVERY : 100 # update EMA every EMA_EVERY iterations
START_EMA : 2000 # start EMA after START_EMA iterations
SAVE_MODEL_EVERY : 50000 # save model every SAVE_MODEL_EVERY iterations
EMA: 'False' # if True, use EMA
CONTINUE_TRAINING : 'False' # if True, continue training
CONTINUE_TRAINING_STEPS : # continue training from CONTINUE_TRAINING_STEPS
PRETRAINED_PATH_BETA_PREDICTOR: ' '
PRETRAINED_PATH_DEPTH_ESTIMATOR : ' '
PRETRAINED_PATH_DENOISER: ' '
WEIGHT_SAVE_PATH : ' ' # path to save model
TRAIN_PATH : ' ' # path of training data
BETA_LOSS : 50 # hyperparameter to balance the pixel loss and the diffusion loss
HIGH_LOW_FREQ : 'False' # if True, training with frequency separation
OUTPUT_DIR: ' '
# test
NATIVE_RESOLUTION : 'False' # if True, test with native resolution
DPM_SOLVER : 'False' # if True, test with DPM_solver
DPM_STEP : 20 # DPM_solver step
BATCH_SIZE_VAL : 1 # test batch size
PATH_TEST_IMG : ' ' # path of input
PATH_TEST_GT : ' ' # path of ground truth
PATH_TEST_GT_DEPTH : ' ' # path of depth
PATH_TEST_IMG_HIST: ' ' # path of histogram
TEST_PATH : ' ' # path to save results
VIS_PATH: ' ' # path to save results

0
data/__init__.py Normal file
View File

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

89
data/data.py Normal file
View File

@@ -0,0 +1,89 @@
import os
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision.transforms import (
Compose,
InterpolationMode,
Resize,
ToTensor,
)
def ImageTransform(loadSize):
return {
"train": Compose(
[
Resize(loadSize, interpolation=InterpolationMode.BILINEAR),
ToTensor(),
]
),
"test": Compose(
[
Resize(loadSize, interpolation=InterpolationMode.BILINEAR),
ToTensor(),
]
),
}
class UIEData(Dataset):
def __init__(
self, path_img, path_gt, path_gt_depth, path_img_hist, loadSize, mode=1
):
super().__init__()
self.path_img = path_img
self.path_gt = path_gt
self.path_gt_depth = path_gt_depth
self.path_img_hist = path_img_hist
self.loadsize = loadSize # e.g. (336, 336) or 336
self.crop_pad_size = (
loadSize[0] if isinstance(loadSize, (tuple, list)) else loadSize
)
self.mode = mode
self.data_img = os.listdir(self.path_img)
self.data_gt = os.listdir(self.path_gt)
self.data_gt_depth = os.listdir(self.path_gt_depth)
self.data_img_hist = os.listdir(self.path_img_hist)
if mode == 1:
self.ImgTrans = ImageTransform(loadSize)["train"]
else:
self.ImgTrans = ImageTransform(loadSize)["test"]
def __len__(self):
return len(self.data_gt)
def __getitem__(self, idx):
img = Image.open(os.path.join(self.path_img, self.data_img[idx])).convert("RGB")
gt = Image.open(os.path.join(self.path_gt, self.data_img[idx])).convert("RGB")
label_depth = Image.open(
os.path.join(self.path_gt_depth, self.data_img[idx])
).convert("RGB")
img_hist = Image.open(
os.path.join(self.path_img_hist, self.data_img[idx])
).convert("RGB")
name = self.data_img[idx]
h, w = img.size
if self.mode == 1:
seed = torch.random.seed()
torch.random.manual_seed(seed)
img = self.ImgTrans(img)
torch.random.manual_seed(seed)
gt = self.ImgTrans(gt)
torch.random.manual_seed(seed)
label_depth = self.ImgTrans(label_depth)
torch.random.manual_seed(seed)
img_hist = self.ImgTrans(img_hist)
else:
img = self.ImgTrans(img)
gt = self.ImgTrans(gt)
label_depth = self.ImgTrans(label_depth)
img_hist = self.ImgTrans(img_hist)
return img, gt, label_depth, img_hist, name, (h, w)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

153
depth_anything/blocks.py Normal file
View File

@@ -0,0 +1,153 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape*2
out_shape3 = out_shape*4
if len(in_shape) >= 4:
out_shape4 = out_shape*8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups=1
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
if self.bn==True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn==True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn==True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block.
"""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups=1
self.expand = expand
out_features = features
if self.expand==True:
out_features = features//2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size=size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(
output, **modifier, mode="bilinear", align_corners=self.align_corners
)
output = self.out_conv(output)
return output

171
depth_anything/dpt.py Normal file
View File

@@ -0,0 +1,171 @@
import torch
import torch.nn as nn
from .blocks import FeatureFusionBlock, _make_scratch
import torch.nn.functional as F
def _make_fusion_block(features, use_bn, size = None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList([
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
) for out_channel in out_channels
])
self.resize_layers = nn.ModuleList([
nn.ConvTranspose2d(
in_channels=out_channels[0],
out_channels=out_channels[0],
kernel_size=4,
stride=4,
padding=0),
nn.ConvTranspose2d(
in_channels=out_channels[1],
out_channels=out_channels[1],
kernel_size=2,
stride=2,
padding=0),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3],
out_channels=out_channels[3],
kernel_size=3,
stride=2,
padding=1)
])
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(
nn.Sequential(
nn.Linear(2 * in_channels, in_channels),
nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(self, encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], use_bn=False, use_clstoken=False, localhub=True):
super(DPT_DINOv2, self).__init__()
assert encoder in ['vits', 'vitb', 'vitl']
# in case the Internet connection is not stable, please load the DINOv2 locally
if localhub:
self.pretrained = torch.hub.load('torchhub/facebookresearch_dinov2_main', 'dinov2_{:}14'.format(encoder), source='local', pretrained=False)
else:
self.pretrained = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder))
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
# return depth.squeeze(1)
return depth
if __name__ == '__main__':
depth_anything = DPT_DINOv2()
depth_anything.load_state_dict(torch.load('checkpoints/depth_anything_dinov2_vitl14.pth'))

View File

@@ -0,0 +1,248 @@
import random
from PIL import Image, ImageOps, ImageFilter
import torch
from torchvision import transforms
import torch.nn.functional as F
import numpy as np
import cv2
import math
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
)
sample["disparity"] = cv2.resize(
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode='nearest').numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

18
main.py Normal file
View File

@@ -0,0 +1,18 @@
from src.config import load_config
from src.train import train, test
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='conf.yml', help='path to the config.yaml file')
args = parser.parse_args()
config = load_config(args.config)
print('Config loaded')
mode = config.MODE
if mode == 1:
train(config)
else:
test(config)
if __name__ == "__main__":
main()

512
model/DocDiff.py Normal file
View File

@@ -0,0 +1,512 @@
import math
import numpy as np
import torch
from torch import nn
from utils.utils import get_A
class Swish(nn.Module):
"""
### Swish actiavation function
$$x \cdot \sigma(x)$$
"""
def forward(self, x):
return x * torch.sigmoid(x)
class TimeEmbedding(nn.Module):
"""
### Embeddings for $t$
"""
def __init__(self, n_channels: int):
"""
* `n_channels` is the number of dimensions in the embedding
"""
super().__init__()
self.n_channels = n_channels
# First linear layer
self.lin1 = nn.Linear(self.n_channels // 4, self.n_channels)
# Activation
self.act = Swish()
# Second linear layer
self.lin2 = nn.Linear(self.n_channels, self.n_channels)
def forward(self, t: torch.Tensor):
# Create sinusoidal position embeddings
# [same as those from the transformer](../../transformers/positional_encoding.html)
#
# \begin{align}
# PE^{(1)}_{t,i} &= sin\Bigg(\frac{t}{10000^{\frac{i}{d - 1}}}\Bigg) \\
# PE^{(2)}_{t,i} &= cos\Bigg(\frac{t}{10000^{\frac{i}{d - 1}}}\Bigg)
# \end{align}
#
# where $d$ is `half_dim`
half_dim = self.n_channels // 8
emb = math.log(10_000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=t.device) * -emb)
emb = t[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=1)
# Transform with the MLP
emb = self.act(self.lin1(emb))
emb = self.lin2(emb)
#
return emb
class ResidualBlock(nn.Module):
"""
### Residual block
A residual block has two convolution layers with group normalization.
Each resolution is processed with two residual blocks.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
time_channels: int,
dropout: float = 0.1,
is_noise: bool = True,
):
"""
* `in_channels` is the number of input channels
* `out_channels` is the number of input channels
* `time_channels` is the number channels in the time step ($t$) embeddings
* `n_groups` is the number of groups for [group normalization](../../normalization/group_norm/index.html)
* `dropout` is the dropout rate
"""
super().__init__()
# Group normalization and the first convolution layer
self.is_noise = is_noise
self.act1 = Swish()
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=(3, 3), padding=(1, 1)
)
# Group normalization and the second convolution layer
self.act2 = Swish()
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=(3, 3), padding=(1, 1)
)
# If the number of input channels is not equal to the number of output channels we have to
# project the shortcut connection
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=(1, 1))
else:
self.shortcut = nn.Identity()
# Linear layer for time embeddings
if self.is_noise:
self.time_emb = nn.Linear(time_channels, out_channels)
self.time_act = Swish()
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor, t: torch.Tensor):
"""
* `x` has shape `[batch_size, in_channels, height, width]`
* `t` has shape `[batch_size, time_channels]`
"""
# First convolution layer
h = self.conv1(self.act1(x))
# Add time embeddings
if self.is_noise:
h += self.time_emb(self.time_act(t))[:, :, None, None]
# Second convolution layer
h = self.conv2(self.dropout(self.act2(h)))
# Add the shortcut connection and return
return h + self.shortcut(x)
class DownBlock(nn.Module):
"""
### Down block
This combines `ResidualBlock` and `AttentionBlock`. These are used in the first half of U-Net at each resolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
time_channels: int,
is_noise: bool = True,
):
super().__init__()
self.res = ResidualBlock(
in_channels, out_channels, time_channels, is_noise=is_noise
)
def forward(self, x: torch.Tensor, t: torch.Tensor):
x = self.res(x, t)
return x
class UpBlock(nn.Module):
"""
### Up block
This combines `ResidualBlock` and `AttentionBlock`. These are used in the second half of U-Net at each resolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
time_channels: int,
is_noise: bool = True,
):
super().__init__()
# The input has `in_channels + out_channels` because we concatenate the output of the same resolution
# from the first half of the U-Net
self.res = ResidualBlock(
in_channels + out_channels, out_channels, time_channels, is_noise=is_noise
)
def forward(self, x: torch.Tensor, t: torch.Tensor):
x = self.res(x, t)
return x
class MiddleBlock(nn.Module):
"""
### Middle block
It combines a `ResidualBlock`, `AttentionBlock`, followed by another `ResidualBlock`.
This block is applied at the lowest resolution of the U-Net.
"""
def __init__(self, n_channels: int, time_channels: int, is_noise: bool = True):
super().__init__()
self.res1 = ResidualBlock(
n_channels, n_channels, time_channels, is_noise=is_noise
)
self.dia1 = nn.Conv2d(
n_channels, n_channels, 3, 1, dilation=2, padding=get_pad(16, 3, 1, 2)
)
self.dia2 = nn.Conv2d(
n_channels, n_channels, 3, 1, dilation=4, padding=get_pad(16, 3, 1, 4)
)
self.dia3 = nn.Conv2d(
n_channels, n_channels, 3, 1, dilation=8, padding=get_pad(16, 3, 1, 8)
)
self.dia4 = nn.Conv2d(
n_channels, n_channels, 3, 1, dilation=16, padding=get_pad(16, 3, 1, 16)
)
self.res2 = ResidualBlock(
n_channels, n_channels, time_channels, is_noise=is_noise
)
def forward(self, x: torch.Tensor, t: torch.Tensor):
x = self.res1(x, t)
x = self.dia1(x)
x = self.dia2(x)
x = self.dia3(x)
x = self.dia4(x)
x = self.res2(x, t)
return x
class Upsample(nn.Module):
"""
### Scale up the feature map by $2 \times$
"""
def __init__(self, n_channels):
super().__init__()
self.conv = nn.ConvTranspose2d(n_channels, n_channels, (4, 4), (2, 2), (1, 1))
def forward(self, x: torch.Tensor, t: torch.Tensor):
# `t` is not used, but it's kept in the arguments because for the attention layer function signature
# to match with `ResidualBlock`.
_ = t
return self.conv(x)
class Downsample(nn.Module):
"""
### Scale down the feature map by $\frac{1}{2} \times$
"""
def __init__(self, n_channels):
super().__init__()
self.conv = nn.Conv2d(n_channels, n_channels, (3, 3), (2, 2), (1, 1))
def forward(self, x: torch.Tensor, t: torch.Tensor):
# `t` is not used, but it's kept in the arguments because for the attention layer function signature
# to match with `ResidualBlock`.
_ = t
return self.conv(x)
class Denoise_UNet(nn.Module):
"""
## U-Net
"""
def __init__(
self, input_channels, output_channels, n_channels, ch_mults, n_blocks, is_noise
):
"""
* `image_channels` is the number of channels in the image. $3$ for RGB.
* `n_channels` is number of channels in the initial feature map that we transform the image into
* `ch_mults` is the list of channel numbers at each resolution. The number of channels is `ch_mults[i] * n_channels`
* `is_attn` is a list of booleans that indicate whether to use attention at each resolution
* `n_blocks` is the number of `UpDownBlocks` at each resolution
"""
super().__init__()
# Number of resolutions
n_resolutions = len(ch_mults)
# Project image into feature map
self.image_proj = nn.Conv2d(
input_channels, n_channels, kernel_size=(3, 3), padding=(1, 1)
)
# Time embedding layer. Time embedding has `n_channels * 4` channels
self.is_noise = is_noise
if is_noise:
self.time_emb = TimeEmbedding(n_channels * 4)
# #### First half of U-Net - decreasing resolution
down = []
# Number of channels
out_channels = in_channels = n_channels
# For each resolution
for i in range(n_resolutions):
# Number of output channels at this resolution
out_channels = n_channels * ch_mults[i]
# Add `n_blocks`
for _ in range(n_blocks):
down.append(
DownBlock(
in_channels, out_channels, n_channels * 4, is_noise=is_noise
)
)
in_channels = out_channels
# Down sample at all resolutions except the last
if i < n_resolutions - 1:
down.append(Downsample(in_channels))
# Combine the set of modules
self.down = nn.ModuleList(down)
# Middle block
self.middle = MiddleBlock(out_channels, n_channels * 4, is_noise=False)
# #### Second half of U-Net - increasing resolution
up = []
# Number of channels
in_channels = out_channels
# For each resolution
for i in reversed(range(n_resolutions)):
# `n_blocks` at the same resolution
out_channels = n_channels * ch_mults[i]
for _ in range(n_blocks):
up.append(
UpBlock(
in_channels, out_channels, n_channels * 4, is_noise=is_noise
)
)
# Final block to reduce the number of channels
in_channels = n_channels * (ch_mults[i - 1] if i >= 1 else 1)
up.append(
UpBlock(in_channels, out_channels, n_channels * 4, is_noise=is_noise)
)
in_channels = out_channels
# Up sample at all resolutions except last
if i > 0:
up.append(Upsample(in_channels))
# Combine the set of modules
self.up = nn.ModuleList(up)
self.act = Swish()
self.final = nn.Conv2d(
in_channels, output_channels, kernel_size=(3, 3), padding=(1, 1)
)
def forward(self, x: torch.Tensor, t: torch.Tensor = torch.tensor([0]).cuda()):
"""
* `x` has shape `[batch_size, in_channels, height, width]`
* `t` has shape `[batch_size]`
"""
# Get time-step embeddings
if self.is_noise:
t = self.time_emb(t)
else:
t = None
# Get image projection
x = self.image_proj(x)
# `h` will store outputs at each resolution for skip connection
h = [x]
# First half of U-Net
for m in self.down:
x = m(x, t)
h.append(x)
# Middle (bottom)
x = self.middle(x, t)
# Second half of U-Net
for m in self.up:
if isinstance(m, Upsample):
x = m(x, t)
else:
# Get the skip connection from first half of U-Net and concatenate
s = h.pop()
# print(x.shape, s.shape)
x = torch.cat((x, s), dim=1)
#
x = m(x, t)
# Final normalization and convolution
return self.final(self.act(x))
class Beta_UNet(nn.Module):
def __init__(self, input_channels, output_channels, n_channels, ch_mults, n_blocks):
super().__init__()
is_noise = False
# Number of resolutions
n_resolutions = len(ch_mults)
# Project image into feature map
self.image_proj = nn.Conv2d(
input_channels, n_channels, kernel_size=(3, 3), padding=(1, 1)
)
# #### First half of U-Net - decreasing resolution
down = []
# Number of channels
out_channels = in_channels = n_channels
# For each resolution
for i in range(n_resolutions):
# Number of output channels at this resolution
out_channels = n_channels * ch_mults[i]
# Add `n_blocks`
for _ in range(n_blocks):
down.append(
DownBlock(
in_channels, out_channels, n_channels * 4, is_noise=is_noise
)
)
in_channels = out_channels
# Down sample at all resolutions except the last
if i < n_resolutions - 1:
down.append(Downsample(in_channels))
# Combine the set of modules
self.down = nn.ModuleList(down)
# Middle block
self.middle = MiddleBlock(out_channels, n_channels * 4, is_noise=False)
self.act = Swish()
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.transform = nn.Sequential(nn.Linear(128, 3), Swish(), nn.Linear(3, 3))
def forward(self, x: torch.Tensor):
t = None
x = self.image_proj(x)
h = [x]
for m in self.down:
x = m(x, t)
h.append(x)
x = self.middle(x, t)
x = torch.sigmoid(self.transform(self.pool(x).squeeze()))
return x.unsqueeze(-1).unsqueeze(-1)
class DocDiff(nn.Module):
def __init__(
self,
input_channels,
output_channels,
n_channels,
ch_mults,
n_blocks,
):
super(DocDiff, self).__init__()
self.beta_predictor = Beta_UNet(3, 3, n_channels, ch_mults, n_blocks)
self.denoiser = Denoise_UNet(
12, 3, n_channels, ch_mults, n_blocks, is_noise=True
)
def forward(self, x, condition, hist, depth, t, diffusion):
pred_beta = self.beta_predictor(condition)
depth = (depth - depth.min()) / (depth.max() - depth.min())
T_direct = torch.clamp((torch.exp(-pred_beta * depth)), 0, 1)
T_scatter = torch.clamp((1 - torch.exp(-pred_beta * depth)), 0, 1)
atm_light = [get_A(item) for item in condition]
atm_light = torch.stack(atm_light).to(x.device)
J = torch.clamp(((condition - T_scatter * atm_light) / T_direct), 0, 1)
noisy_image, noise_ref = diffusion.noisy_image(t, x)
denoised_J = self.denoiser(
torch.cat((noisy_image, condition.clone().detach(), J, hist), dim=1), t
)
return J, noise_ref, denoised_J, T_direct, T_scatter
class EMA:
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_model_average(self, ma_model, current_model):
for current_params, ma_params in zip(
current_model.parameters(), ma_model.parameters()
):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = self.update_average(old_weight, up_weight)
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def get_pad(in_, ksize, stride, atrous=1):
out_ = np.ceil(float(in_) / stride)
return int(((out_ - 1) * stride + atrous * (ksize - 1) + 1 - in_) / 2)
if __name__ == "__main__":
import argparse
import torchsummary
from schedule.diffusionSample import GaussianDiffusion
from schedule.schedule import Schedule
from src.config import load_config
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, default="../conf.yml", help="path to the config.yaml file"
)
args = parser.parse_args()
config = load_config(args.config)
print("Config loaded")
model = DocDiff(
input_channels=config.CHANNEL_X + config.CHANNEL_Y,
output_channels=config.CHANNEL_Y,
n_channels=config.MODEL_CHANNELS,
ch_mults=config.CHANNEL_MULT,
n_blocks=config.NUM_RESBLOCKS,
)
schedule = Schedule(config.SCHEDULE, config.TIMESTEPS)
diffusion = GaussianDiffusion(model, config.TIMESTEPS, schedule)
model.eval()
print(
torchsummary.summary(
model.init_predictor.cuda(), [(3, 128, 128)], batch_size=32
)
)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

140
schedule/diffusionSample.py Normal file
View File

@@ -0,0 +1,140 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
def extract_(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def extract(v, t, x_shape):
"""
Extract some coefficients at specified timesteps, then reshape to
[batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.
"""
device = t.device
out = torch.gather(v, index=t, dim=0).float().to(device)
return out.view([t.shape[0]] + [1] * (len(x_shape) - 1))
class GaussianDiffusion(nn.Module):
def __init__(self, model, T, schedule):
super().__init__()
self.visual = False
if self.visual:
self.num = 0
self.model = model
self.T = T
self.schedule = schedule
betas = self.schedule.get_betas()
self.register_buffer("betas", betas.float())
alphas = 1.0 - self.betas
alphas_bar = torch.cumprod(alphas, dim=0)
alphas_bar_prev = F.pad(alphas_bar, [1, 0], value=1)[:T]
gammas = alphas_bar
self.register_buffer("coeff1", torch.sqrt(1.0 / alphas))
self.register_buffer(
"coeff2", self.coeff1 * (1.0 - alphas) / torch.sqrt(1.0 - alphas_bar)
)
self.register_buffer(
"posterior_var", self.betas * (1.0 - alphas_bar_prev) / (1.0 - alphas_bar)
)
self.register_buffer("gammas", gammas)
self.register_buffer("sqrt_one_minus_gammas", torch.sqrt(1 - gammas))
self.register_buffer("sqrt_gammas", torch.sqrt(gammas))
def predict_xt_prev_mean_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
extract(self.coeff1, t, x_t.shape) * x_t
- extract(self.coeff2, t, x_t.shape) * eps
)
def predict_eps_from_x0(self, x_t, t, x_0):
return (x_t - extract(self.sqrt_gammas, t, x_t.shape) * x_0) / extract(
self.sqrt_one_minus_gammas, t, x_t.shape
)
def x0_p_mean_variance(self, x_t, cond_, t):
var = torch.cat([self.posterior_var[1:2], self.betas[1:]])
var = extract(var, t, x_t.shape)
x0_pred = self.model(torch.cat((x_t, cond_), dim=1), t)
eps = self.predict_eps_from_x0(x_t, t, x0_pred)
xt_prev_mean = self.predict_xt_prev_mean_from_eps(x_t, t, eps=eps)
return xt_prev_mean, var
def p_mean_variance(self, x_t, cond_, t):
var = torch.cat([self.posterior_var[1:2], self.betas[1:]])
var = extract(var, t, x_t.shape)
eps = self.model(torch.cat((x_t, cond_), dim=1), t)
xt_prev_mean = self.predict_xt_prev_mean_from_eps(x_t, t, eps=eps)
return xt_prev_mean, var
def noisy_image(self, t, y):
"""Compute y_noisy according to (6) p15 of [2]"""
noise = torch.randn_like(y)
y_noisy = (
extract_(self.sqrt_gammas, t, y.shape) * y
+ extract_(self.sqrt_one_minus_gammas, t, noise.shape) * noise
)
return y_noisy, noise
def forward(self, x_T, cond, cond_J, cond_hist, pre_ori="False"):
"""
Algorithm 2.
"""
x_t = x_T
cond_ = cond
cond_hist_ = cond_hist
cond_J_ = cond_J
for time_step in reversed(range(self.T)):
print("time_step: ", time_step)
t = (
x_t.new_ones(
[
x_T.shape[0],
],
dtype=torch.long,
)
* time_step
)
if pre_ori == "False":
mean, var = self.p_mean_variance(
x_t=x_t, t=t, cond_=torch.cat((cond_, cond_J_, cond_hist_), dim=1)
)
if time_step > 0:
noise = torch.randn_like(x_t)
else:
noise = 0
x_t = mean + torch.sqrt(var) * noise
assert torch.isnan(x_t).int().sum() == 0, "nan in tensor."
else:
mean, var = self.x0_p_mean_variance(
x_t=x_t, t=t, cond_=torch.cat((cond_, cond_J_, cond_hist_), dim=1)
)
if time_step > 0:
noise = torch.randn_like(x_t)
else:
noise = 0
x_t = mean + torch.sqrt(var) * noise
assert torch.isnan(x_t).int().sum() == 0, "nan in tensor."
x_0 = x_t
return x_0
if __name__ == "__main__":
from schedule import Schedule
test = GaussianDiffusion(None, 100, Schedule("linear", 100))
print(test.gammas)

File diff suppressed because it is too large Load Diff

53
schedule/schedule.py Normal file
View File

@@ -0,0 +1,53 @@
import numpy as np
import torch
class Schedule:
def __init__(self, schedule, timesteps):
self.timesteps = timesteps
self.schedule = schedule
def cosine_beta_schedule(self, s=0.001):
timesteps = self.timesteps
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0.0001, 0.9999)
def linear_beta_schedule(self):
timesteps = self.timesteps
scale = 1000 / timesteps
beta_start = 1e-6 * scale
beta_end = 0.02 * scale
return torch.linspace(beta_start, beta_end, timesteps)
def quadratic_beta_schedule(self):
timesteps = self.timesteps
scale = 1000 / timesteps
beta_start = 1e-6 * scale
beta_end = 0.02 * scale
return torch.linspace(beta_start ** 0.5, beta_end ** 0.5, timesteps) ** 2
def sigmoid_beta_schedule(self):
timesteps = self.timesteps
scale = 1000 / timesteps
beta_start = 1e-6 * scale
beta_end = 0.02 * scale
betas = torch.linspace(-6, 6, timesteps)
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
def get_betas(self):
if self.schedule == "linear":
return self.linear_beta_schedule()
elif self.schedule == 'cosine':
return self.cosine_beta_schedule()
else:
raise NotImplementedError
if __name__ == "__main__":
schedule = Schedule(schedule="linear", timesteps=100)
print(schedule.get_betas().shape)
print(schedule.get_betas())

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

29
src/config.py Normal file
View File

@@ -0,0 +1,29 @@
import yaml
import os
class Config(dict):
def __init__(self, config_path):
with open(config_path, 'r') as f:
self._yaml = f.read()
self._dict = yaml.safe_load(self._yaml)
self._dict['PATH'] = os.path.dirname(config_path)
def __getattr__(self, name):
if self._dict.get(name) is not None:
return self._dict[name]
return None
def print(self):
print('Model configurations:')
print('---------------------------------')
print(self._yaml)
print('')
print('---------------------------------')
print('')
def load_config(path):
config_path = path
config = Config(config_path)
return config

43
src/sobel.py Normal file
View File

@@ -0,0 +1,43 @@
from torch import nn
import torch
class Sobel(nn.Module):
def __init__(self):
super().__init__()
self.filter = nn.Conv2d(in_channels=1, out_channels=2, kernel_size=3, stride=1, padding=1, bias=False)
Gx = torch.tensor([[1.0, 0.0, -1.0], [2.0, 0.0, -2.0], [1.0, 0.0, -1.0]])
Gy = torch.tensor([[1.0, 2.0, 1.0], [0.0, 0.0, 0.0], [-1.0, -2.0, -1.0]])
G = torch.cat([Gx.unsqueeze(0), Gy.unsqueeze(0)], 0)
G = G.unsqueeze(1)
self.filter.weight = nn.Parameter(G, requires_grad=False)
def forward(self, img):
if img.shape[1] == 3:
img = torch.mean(img, dim=1, keepdim=True)
x = self.filter(img)
x = torch.mul(x, x)
x = torch.sum(x, dim=1, keepdim=True)
x = torch.sqrt(x)
return x
class Laplacian(nn.Module):
def __init__(self):
super().__init__()
self.filter = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1, bias=False, groups=3)
G = torch.tensor([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]).float()
G = G.unsqueeze(0).unsqueeze(0)
G = torch.cat([G, G, G], 0)
self.filter.weight = nn.Parameter(G, requires_grad=False)
def forward(self, img):
x = self.filter(img)
return x
if __name__ == "__main__":
laplacian = Laplacian()
img = torch.randn(1, 3, 256, 256)
y = laplacian(img)
print(y.shape)

13
src/train.py Normal file
View File

@@ -0,0 +1,13 @@
from src.trainer import Trainer
def train(config):
trainer = Trainer(config)
trainer.train()
print('training complete')
def test(config):
trainer = Trainer(config)
trainer.test()
print('testing complete')

614
src/trainer.py Normal file
View File

@@ -0,0 +1,614 @@
import copy
import os
import torch
import torch.nn as nn
import torch.optim as optim
from model.DocDiff import EMA, DocDiff
from schedule.diffusionSample import GaussianDiffusion
from schedule.dpm_solver_pytorch import DPM_Solver, NoiseScheduleVP, model_wrapper
from schedule.schedule import Schedule
from src.sobel import Laplacian
from torch.utils.data import DataLoader
from torchvision.transforms import Resize
from torchvision.utils import save_image
from tqdm import tqdm
from utils.perceptual_loss import PerceptualLoss
from utils.utils import get_A
# from utils.RGBuvHistBlock import RGBuvHistBlock
# from depth_anything.dpt import DPT_DINOv2
class Trainer:
def __init__(self, config):
self.mode = config.MODE
self.schedule = Schedule(config.SCHEDULE, config.TIMESTEPS)
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
in_channels = config.CHANNEL_X + config.CHANNEL_Y
out_channels = config.CHANNEL_Y
self.out_channels = out_channels
self.network = DocDiff(
input_channels=in_channels,
output_channels=out_channels,
n_channels=config.MODEL_CHANNELS,
ch_mults=config.CHANNEL_MULT,
n_blocks=config.NUM_RESBLOCKS,
).to(self.device)
self.diffusion = GaussianDiffusion(
self.network.denoiser, config.TIMESTEPS, self.schedule
).to(self.device)
self.output_dir = config.OUTPUT_DIR
self.test_path = os.path.join(config.OUTPUT_DIR, config.TEST_PATH)
if not os.path.exists(self.test_path):
os.makedirs(self.test_path)
self.vis_path = os.path.join(config.OUTPUT_DIR, config.VIS_PATH)
if not os.path.exists(self.vis_path):
os.makedirs(self.vis_path)
self.train_path = os.path.join(config.OUTPUT_DIR, config.TRAIN_PATH)
if not os.path.exists(self.train_path):
os.makedirs(self.train_path)
self.weight_save_path = os.path.join(config.OUTPUT_DIR, config.WEIGHT_SAVE_PATH)
if not os.path.exists(self.weight_save_path):
os.makedirs(self.weight_save_path)
self.pretrained_path_beta_predictor = config.PRETRAINED_PATH_BETA_PREDICTOR
self.pretrained_path_denoiser = config.PRETRAINED_PATH_DENOISER
self.pretrained_path_depth_estimator = config.PRETRAINED_PATH_DEPTH_ESTIMATOR
self.continue_training = config.CONTINUE_TRAINING
self.continue_training_steps = 0
self.path_train_gt = config.PATH_GT
self.path_train_img = config.PATH_IMG
self.path_train_label_depth = config.PATH_GT_DEPTH
self.path_train_hist = config.PATH_IMG_HIST
self.path_test_img = config.PATH_TEST_IMG
self.path_test_gt = config.PATH_TEST_GT
self.path_test_label_depth = config.PATH_TEST_GT_DEPTH
self.path_test_hist = config.PATH_TEST_IMG_HIST
self.beta_loss = config.BETA_LOSS
self.pre_ori = config.PRE_ORI
self.high_low_freq = config.HIGH_LOW_FREQ
self.image_size = config.IMAGE_SIZE
self.native_resolution = config.NATIVE_RESOLUTION
self.iteration_max = config.ITERATION_MAX
self.LR = config.LR
self.cross_entropy = nn.BCELoss()
self.num_timesteps = config.TIMESTEPS
self.ema_every = config.EMA_EVERY
self.start_ema = config.START_EMA
self.save_model_every = config.SAVE_MODEL_EVERY
self.EMA_or_not = config.EMA
self.DPM_SOLVER = config.DPM_SOLVER
self.DPM_STEP = config.DPM_STEP
if self.mode == 1 and self.continue_training == "True":
print("Continue Training")
self.network.beta_predictor.load_state_dict(
torch.load(self.pretrained_path_beta_predictor)
)
self.network.denoiser.load_state_dict(
torch.load(self.pretrained_path_denoiser)
)
self.continue_training_steps = config.CONTINUE_TRAINING_STEPS
# if self.mode == 0:
# self.depth_estimator = DPT_DINOv2(
# encoder="vits",
# features=64,
# out_channels=[48, 96, 192, 384],
# localhub=True)
# self.depth_estimator.load_state_dict(
# torch.load(
# self.pretrained_path_depth_estimator,
# map_location="cpu",
# ),
# strict=True,
# )
# self.hist_estimator = RGBuvHistBlock(
# insz=config.IMAGE_SIZE[0],
# h=config.IMAGE_SIZE[1],
# resizing='sampling',
# method='inverse-quadratic',
# sigma=0.02,
# device=self.device)
from data.data import UIEData
if self.mode == 1:
dataset_train = UIEData(
self.path_train_img,
self.path_train_gt,
self.path_train_label_depth,
self.path_train_hist,
config.IMAGE_SIZE,
self.mode,
)
self.dataloader_train = DataLoader(
dataset_train,
batch_size=config.BATCH_SIZE,
shuffle=True,
drop_last=False,
num_workers=config.NUM_WORKERS,
)
dataset_eval = UIEData(
self.path_test_img,
self.path_test_gt,
self.path_test_label_depth,
self.path_test_hist,
config.IMAGE_SIZE,
mode=0,
)
self.dataloader_eval = DataLoader(
dataset_eval,
batch_size=config.BATCH_SIZE_VAL,
shuffle=False,
drop_last=False,
num_workers=config.NUM_WORKERS,
)
else:
dataset_test = UIEData(
self.path_test_img,
self.path_test_gt,
self.path_test_label_depth,
self.path_test_hist,
config.IMAGE_SIZE,
self.mode,
)
self.dataloader_test = DataLoader(
dataset_test,
batch_size=config.BATCH_SIZE_VAL,
shuffle=False,
drop_last=False,
num_workers=config.NUM_WORKERS,
)
if self.mode == 1 and config.EMA == "True":
self.EMA = EMA(0.9999)
self.ema_model = copy.deepcopy(self.network).to(self.device)
if config.LOSS == "L1":
self.loss = nn.L1Loss()
elif config.LOSS == "L2":
self.loss = nn.MSELoss()
else:
print("Loss not implemented, setting the loss to L2 (default one)")
self.loss = nn.MSELoss()
if self.high_low_freq == "True":
self.high_filter = Laplacian().to(self.device)
self.perceptual_loss = PerceptualLoss()
def test(self):
def crop_concat(img, size=128):
shape = img.shape
correct_shape = (
size * (shape[2] // size + 1),
size * (shape[3] // size + 1),
)
one = torch.ones((shape[0], shape[1], correct_shape[0], correct_shape[1]))
one[:, :, : shape[2], : shape[3]] = img
# crop
for i in range(shape[2] // size + 1):
for j in range(shape[3] // size + 1):
if i == 0 and j == 0:
crop = one[
:, :, i * size : (i + 1) * size, j * size : (j + 1) * size
]
else:
crop = torch.cat(
(
crop,
one[
:,
:,
i * size : (i + 1) * size,
j * size : (j + 1) * size,
],
),
dim=0,
)
return crop
def crop_concat_back(img, prediction, size=128):
shape = img.shape
for i in range(shape[2] // size + 1):
for j in range(shape[3] // size + 1):
if j == 0:
crop = prediction[
(i * (shape[3] // size + 1) + j) * shape[0] : (
i * (shape[3] // size + 1) + j + 1
)
* shape[0],
:,
:,
:,
]
else:
crop = torch.cat(
(
crop,
prediction[
(i * (shape[3] // size + 1) + j) * shape[0] : (
i * (shape[3] // size + 1) + j + 1
)
* shape[0],
:,
:,
:,
],
),
dim=3,
)
if i == 0:
crop_concat = crop
else:
crop_concat = torch.cat((crop_concat, crop), dim=2)
return crop_concat[:, :, : shape[2], : shape[3]]
def min_max(array):
return (array - array.min()) / (array.max() - array.min())
with torch.no_grad():
self.network.beta_predictor.load_state_dict(
torch.load(self.pretrained_path_beta_predictor)
)
self.network.denoiser.load_state_dict(
torch.load(self.pretrained_path_denoiser)
)
print("Test Model loaded")
self.network.eval()
tq = tqdm(self.dataloader_test)
sampler = self.diffusion
iteration = 0
num_iter = 10
for img, gt, label_depth, hist, name, in_size in tq:
tq.set_description(
f"Iteration {iteration} / {len(self.dataloader_test.dataset)}"
)
iteration += 1
pred_beta = self.network.beta_predictor(img.to(self.device))
T_direct = torch.clamp((torch.exp(-pred_beta * label_depth)), 0, 1)
T_scatter = torch.clamp((1 - torch.exp(-pred_beta * label_depth)), 0, 1)
atm_light = [get_A(item) for item in img.to(self.device)]
atm_light = torch.stack(atm_light).to(self.device)
J = torch.clamp(
((img.to(self.device) - T_scatter * atm_light) / T_direct), 0, 1
)
noisyImage = torch.randn_like(img.to(self.device))
if self.DPM_SOLVER == "True":
sampledImgs = dpm_solver(
self.schedule.get_betas(),
self.network,
torch.cat((noisyImage, img.to(self.device)), dim=1),
self.DPM_STEP,
)
else:
sampledImgs = sampler(
noisyImage.cuda(),
img.to(self.device),
J.to(self.device),
hist.to(self.device),
self.pre_ori,
)
img_save = torch.cat(
[img, gt, J.cpu(), hist.cpu(), sampledImgs.cpu()], dim=3
)
if not os.path.exists(os.path.join(self.test_path, f"{num_iter}")):
os.makedirs(os.path.join(self.test_path, f"{num_iter}"))
save_image(
img_save,
os.path.join(self.test_path, f"{num_iter}", f"{name[0]}"),
nrow=4,
)
if not os.path.exists(os.path.join(self.vis_path, f"{num_iter}")):
os.makedirs(os.path.join(self.vis_path, f"{num_iter}"))
save_image(
Resize(in_size)(sampledImgs).cpu(),
os.path.join(self.vis_path, f"{num_iter}", f"{name[0]}"),
)
def evaluation(self, num_iter, beta_predictor_weight, denoiser_weight):
def crop_concat(img, size=128):
shape = img.shape
correct_shape = (
size * (shape[2] // size + 1),
size * (shape[3] // size + 1),
)
one = torch.ones((shape[0], shape[1], correct_shape[0], correct_shape[1]))
one[:, :, : shape[2], : shape[3]] = img
# crop
for i in range(shape[2] // size + 1):
for j in range(shape[3] // size + 1):
if i == 0 and j == 0:
crop = one[
:, :, i * size : (i + 1) * size, j * size : (j + 1) * size
]
else:
crop = torch.cat(
(
crop,
one[
:,
:,
i * size : (i + 1) * size,
j * size : (j + 1) * size,
],
),
dim=0,
)
return crop
def crop_concat_back(img, prediction, size=128):
shape = img.shape
for i in range(shape[2] // size + 1):
for j in range(shape[3] // size + 1):
if j == 0:
crop = prediction[
(i * (shape[3] // size + 1) + j) * shape[0] : (
i * (shape[3] // size + 1) + j + 1
)
* shape[0],
:,
:,
:,
]
else:
crop = torch.cat(
(
crop,
prediction[
(i * (shape[3] // size + 1) + j) * shape[0] : (
i * (shape[3] // size + 1) + j + 1
)
* shape[0],
:,
:,
:,
],
),
dim=3,
)
if i == 0:
crop_concat = crop
else:
crop_concat = torch.cat((crop_concat, crop), dim=2)
return crop_concat[:, :, : shape[2], : shape[3]]
def min_max(array):
return (array - array.min()) / (array.max() - array.min())
with torch.no_grad():
self.network.beta_predictor.load_state_dict(
torch.load(beta_predictor_weight)
)
self.network.denoiser.load_state_dict(torch.load(denoiser_weight))
print("Eval Model loaded")
self.network.eval()
tq = tqdm(self.dataloader_eval)
sampler = self.diffusion
iteration = 0
for img, gt, label_depth, hist, name, in_size in tq:
tq.set_description(
f"Iteration {iteration} / {len(self.dataloader_eval.dataset)}"
)
iteration += 1
if self.native_resolution == "True":
temp = img
img = crop_concat(img)
pred_beta = self.network.beta_predictor(img.to(self.device))
depth = label_depth.to(self.device)
T_direct = torch.clamp((torch.exp(-pred_beta * depth)), 0, 1)
T_scatter = torch.clamp((1 - torch.exp(-pred_beta * depth)), 0, 1)
atm_light = [get_A(item) for item in img.to(self.device)]
atm_light = torch.stack(atm_light).to(self.device)
J = torch.clamp(
((img.to(self.device) - T_scatter * atm_light) / T_direct), 0, 1
)
noisyImage = torch.randn_like(img.to(self.device))
if self.DPM_SOLVER == "True":
sampledImgs = dpm_solver(
self.schedule.get_betas(),
self.network,
torch.cat((noisyImage, img.to(self.device)), dim=1),
self.DPM_STEP,
)
else:
sampledImgs = sampler(
noisyImage.cuda(),
img.to(self.device),
J.to(self.device),
hist.to(self.device),
self.pre_ori,
)
img_save = torch.cat(
[
img,
gt,
J.cpu(),
hist.cpu(),
sampledImgs.cpu(),
T_direct.cpu(),
T_scatter.cpu(),
label_depth.cpu(),
],
dim=3,
)
if not os.path.exists(os.path.join(self.test_path, f"{num_iter}")):
os.makedirs(os.path.join(self.test_path, f"{num_iter}"))
save_image(
img_save,
os.path.join(self.test_path, f"{num_iter}", f"{name[0]}"),
nrow=4,
)
if not os.path.exists(os.path.join(self.vis_path, f"{num_iter}")):
os.makedirs(os.path.join(self.vis_path, f"{num_iter}"))
save_image(
Resize(in_size)(sampledImgs).cpu(),
os.path.join(self.vis_path, f"{num_iter}", f"{name[0]}"),
)
def train(self):
optimizer = optim.AdamW(
self.network.parameters(), lr=self.LR, weight_decay=1e-4
)
iteration = self.continue_training_steps
print("Starting Training", f"Step is {self.num_timesteps}")
total_params = sum(
p.numel() for p in self.network.parameters() if p.requires_grad
)
print(f"Trainable parameters: {total_params}")
while iteration < self.iteration_max:
tq = tqdm(self.dataloader_train)
for img, gt, label_depth, hist, _, _ in tq:
tq.set_description(f"Iteration {iteration} / {self.iteration_max}")
self.network.train()
optimizer.zero_grad()
t = (
torch.randint(0, self.num_timesteps, (img.shape[0],))
.long()
.to(self.device)
)
J, noise_ref, denoised_J, T_direct, T_scatter = self.network(
gt.to(self.device),
img.to(self.device),
hist.to(self.device),
label_depth.to(self.device),
t,
self.diffusion,
)
if self.pre_ori == "True":
ddpm_loss = self.loss(denoised_J, gt.to(self.device))
perceptual_loss = self.perceptual_loss(
denoised_J, gt.to(self.device)
)
else:
ddpm_loss = self.loss(denoised_J, noise_ref.to(self.device))
perceptual_loss = self.perceptual_loss(
denoised_J, noise_ref.to(self.device)
)
loss = ddpm_loss + perceptual_loss
loss.backward()
optimizer.step()
tq.set_postfix(
loss=loss.item(),
ddpm_loss=ddpm_loss.item(),
perceptual_loss=perceptual_loss.item(),
)
if iteration % 1000 == 0:
img_save = torch.cat(
[
img,
gt,
J.cpu(),
denoised_J.cpu(),
hist.cpu(),
T_direct.cpu(),
T_scatter.cpu(),
label_depth.cpu(),
],
dim=3,
)
save_image(
img_save,
os.path.join(self.train_path, f"{iteration}.png"),
nrow=4,
)
iteration += 1
if self.EMA_or_not == "True":
if iteration % self.ema_every == 0 and iteration > self.start_ema:
print("EMA update")
self.EMA.update_model_average(self.ema_model, self.network)
if iteration % self.save_model_every == 0:
print("Saving models")
if not os.path.exists(self.weight_save_path):
os.makedirs(self.weight_save_path)
torch.save(
self.network.beta_predictor.state_dict(),
os.path.join(
self.weight_save_path,
f"model_beta_predictor_{iteration}.pth",
),
)
torch.save(
self.network.denoiser.state_dict(),
os.path.join(
self.weight_save_path, f"model_denoiser_{iteration}.pth"
),
)
self.evaluation(
iteration,
os.path.join(
self.weight_save_path,
f"model_beta_predictor_{iteration}.pth",
),
os.path.join(
self.weight_save_path, f"model_denoiser_{iteration}.pth"
),
)
def dpm_solver(betas, model, x_T, steps, model_kwargs):
# You need to firstly define your model and the extra inputs of your model,
# And initialize an `x_T` from the standard normal distribution.
# `model` has the format: model(x_t, t_input, **model_kwargs).
# If your model has no extra inputs, just let model_kwargs = {}.
# If you use discrete-time DPMs, you need to further define the
# beta arrays for the noise schedule.
# model = ....
# model_kwargs = {...}
# x_T = ...
# betas = ....
# 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule="discrete", betas=betas)
# 2. Convert your discrete-time `model` to the continuous-time
# noise prediction model. Here is an example for a diffusion model
# `model` with the noise prediction type ("noise") .
model_fn = model_wrapper(
model,
noise_schedule,
model_type="noise", # or "x_start" or "v" or "score"
model_kwargs=model_kwargs,
)
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
# (We recommend singlestep DPM-Solver for unconditional sampling)
# You can adjust the `steps` to balance the computation
# costs and the sample quality.
dpm_solver = DPM_Solver(
model_fn,
noise_schedule,
algorithm_type="dpmsolver++",
correcting_x0_fn="dynamic_thresholding",
)
# Can also try
# dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
# You can use steps = 10, 12, 15, 20, 25, 50, 100.
# Empirically, we find that steps in [10, 20] can generate quite good samples.
# And steps = 20 can almost converge.
x_sample = dpm_solver.sample(
x_T,
steps=steps,
order=1,
skip_type="time_uniform",
method="singlestep",
)
return x_sample

3
torchhub/README.md Normal file
View File

@@ -0,0 +1,3 @@
# Local PyTorch Hub
This directory is for loading the DINOv2 encoder locally in case of no Internet connection.

View File

@@ -0,0 +1,80 @@
# Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to make participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment
include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or
advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic
address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.
## Scope
This Code of Conduct applies within all project spaces, and it also applies when
an individual is representing the project or its community in public spaces.
Examples of representing a project or community include using an official
project e-mail address, posting via an official social media account, or acting
as an appointed representative at an online or offline event. Representation of
a project may be further defined and clarified by project maintainers.
This Code of Conduct also applies outside the project spaces when there is a
reasonable belief that an individual's behavior may have a negative impact on
the project or its community.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at <opensource-conduct@meta.com>. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

View File

@@ -0,0 +1,31 @@
# Contributing to DINOv2
We want to make contributing to this project as easy and transparent as
possible.
## Pull Requests
We actively welcome your pull requests.
1. Fork the repo and create your branch from `main`.
2. If you've added code that should be tested, add tests.
3. If you've changed APIs, update the documentation.
4. Ensure the test suite passes.
5. Make sure your code lints.
6. If you haven't already, complete the Contributor License Agreement ("CLA").
## Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Meta's open source projects.
Complete your CLA here: <https://code.facebook.com/cla>
## Issues
We use GitHub issues to track public bugs. Please ensure your description is
clear and has sufficient instructions to be able to reproduce the issue.
Meta has a [bounty program](https://www.facebook.com/whitehat/) for the safe
disclosure of security bugs. In those cases, please go through the process
outlined on that page and do not file a public issue.
## License
By contributing to DINOv2, you agree that your contributions will be licensed
under the LICENSE file in the root directory of this source tree.

View File

@@ -0,0 +1,400 @@
Attribution-NonCommercial 4.0 International
=======================================================================
Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.
Using Creative Commons Public Licenses
Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.
Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors
Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor's permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More_considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees
=======================================================================
Creative Commons Attribution-NonCommercial 4.0 International Public
License
By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-NonCommercial 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.
Section 1 -- Definitions.
a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.
b. Adapter's License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material in
accordance with the terms and conditions of this Public License.
c. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.
d. Effective Technological Measures means those measures that, in the
absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international
agreements.
e. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.
f. Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.
g. Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.
h. Licensor means the individual(s) or entity(ies) granting rights
under this Public License.
i. NonCommercial means not primarily intended for or directed towards
commercial advantage or monetary compensation. For purposes of
this Public License, the exchange of the Licensed Material for
other material subject to Copyright and Similar Rights by digital
file-sharing or similar means is NonCommercial provided there is
no payment of monetary compensation in connection with the
exchange.
j. Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.
k. Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.
l. You means the individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.
Section 2 -- Scope.
a. License grant.
1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:
a. reproduce and Share the Licensed Material, in whole or
in part, for NonCommercial purposes only; and
b. produce, reproduce, and Share Adapted Material for
NonCommercial purposes only.
2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.
3. Term. The term of this Public License is specified in Section
6(a).
4. Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.
5. Downstream recipients.
a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.
b. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.
6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i).
b. Other rights.
1. Moral rights, such as the right of integrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.
2. Patent and trademark rights are not licensed under this
Public License.
3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties, including when
the Licensed Material is used other than for NonCommercial
purposes.
Section 3 -- License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the
following conditions.
a. Attribution.
1. If You Share the Licensed Material (including in modified
form), You must:
a. retain the following if it is supplied by the Licensor
with the Licensed Material:
i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);
ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of
warranties;
v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;
b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and
c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any
reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.
3. If requested by the Licensor, You must remove any of the
information required by Section 3(a)(1)(A) to the extent
reasonably practicable.
4. If You Share Adapted Material You produce, the Adapter's
License You apply must not prevent recipients of the Adapted
Material from complying with this Public License.
Section 4 -- Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database for NonCommercial purposes
only;
b. if You include all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and
c. You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.
For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
c. The disclaimer of warranties and limitation of liability provided
above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.
Section 6 -- Term and Termination.
a. This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.
b. Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:
1. automatically as of the date the violation is cured, provided
it is cured within 30 days of Your discovery of the
violation; or
2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.
Section 7 -- Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.
b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.
Section 8 -- Interpretation.
a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.
b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.
c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.
d. Nothing in this Public License constitutes or may be interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
=======================================================================
Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.
Creative Commons may be contacted at creativecommons.org.

View File

@@ -0,0 +1,201 @@
# Model Card for DINOv2-S/B/L/g
These are Vision Transformer models trained following the method described in the paper:
"DINOv2: Learning Robust Visual Features without Supervision"
We provide 4 models: 1 ViT-g trained from scratch, and 3 ViT-S/B/L models distilled from the ViT-g.
## Model Details
The model takes an image as input and returns a class token and patch tokens.
The embedding dimension is:
- 384 for ViT-S.
- 768 for ViT-B.
- 1024 for ViT-L.
- 1536 for ViT-g.
The models follow a Transformer architecture, with a patch size of 14.
For a 224x224 image, this results in 1 class token + 256 patch tokens.
The models can accept larger images provided the image shapes are multiples of the patch size (14).
If this condition is not verified, the model will crop to the closest smaller multiple of the patch size.
### Model Description
- **Developed by:** Meta AI
- **Model type:** Vision Transformer
- **License:** CC-BY-NC
- **Repository:** https://github.com/facebookresearch/dinov2
- **Paper:** https://arxiv.org/abs/2304.07193
- **Demo:** https://dinov2.metademolab.com/
## Uses
The models are vision backbones providing multi-purpose features for downstream tasks.
### Direct Use
The models can be used without fine-tuning, with downstream classifiers as simple as linear layers, to obtain competitive results:
- on depth estimation, semantic segmentation, using linear layers.
- on image classification, using k-NN classifiers on the class token.
- on image classification, with logistic regression classifiers applied on the class token.
- on image classification, with a linear layer applied on the class token and the average of the patch tokens.
- on image retrieval using nearest neighbors.
### Downstream Use
It is technically possible to perform fine-tuning on the models, for small gains (we measured +2% on ImageNet-1k classification).
We recommend keeping this as a very last step and only when necessary, as the features already provide good performance out-of-the-box.
## Bias, Risks, and Limitations
Despite improvements thanks to the training method not using annotations, we still observe significant biases in our models toward rich households from Western countries.
### Recommendations
We expect fine-tuning will increase the biases in the features produced by the model as they will be tuned to the fine-tuning labels.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')
```
## Training Details
### Training Data
- **Training data:** LVD-142M (see paper)
- **Training regime:** fp16 using PyTorch-FSDP mixed-precision.
### Training Procedure
- **Training objective:**
- DINO self-distillation loss with multi-crop
- iBOT masked-image modeling loss
- KoLeo regularization on [CLS] tokens
- **Architectures:**
- ViT-S (21M params): Patch size 14, embedding dimension 384, 6 heads, MLP FFN
- ViT-B (86M params): Patch size 14, embedding dimension 768, 12 heads, MLP FFN
- ViT-L (0.3B params): Patch size 14, embedding dimension 1024, 16 heads, MLP FFN
- ViT-g (1.1B params): Patch size 14, embedding dimension 1536, 24 heads, SwiGLU FFN
- **Distillation:**
- Distillation follows the standard DINOv2 pretraining procedure, except the teacher is a pretrained ViT-g, frozen.
## Evaluation
We refer users to the associated paper for the evaluation protocols.
<table>
<tr>
<th>model</th>
<th colspan="3">ImageNet-1k</th>
<th>NYU-Depth v2</th>
<th>SUN-RGBD</th>
<th>ADE20k</th>
<th>iNaturalist 2018</th>
<th>Oxford-H</th>
</tr>
<tr>
<th rowspan="2">task</th>
<th>classif. (acc)</th>
<th>classif. (acc)</th>
<th>classif. V2 (acc)</th>
<th>depth (RMSE)</th>
<th>depth (RMSE)</th>
<th>segm. (mAP)</th>
<th>classif. (acc)</th>
<th>retrieval (mAP)</th>
</tr>
<tr>
<!-- <th>^</th> -->
<th>k-NN</th>
<th>linear</th>
<th>linear</th>
<th>linear<br />4 layers</th>
<th>NYU-D transfer</th>
<th>multiscale</th>
<th>linear</th>
<th>nearest neighbor</th>
</tr>
<tr>
<td>ViT-S/14</td>
<td align="right">79.0%</td>
<td align="right">81.1%</td>
<td align="right">70.8%</td>
<td align="right">0.417</td>
<td align="right">0.431</td>
<td align="right">47.2</td>
<td align="right">69.5%</td>
<td align="right">43.2</td>
</tr>
<tr>
<td>ViT-B/14</td>
<td align="right">82.1%</td>
<td align="right">84.5%</td>
<td align="right">74.9%</td>
<td align="right">0.362</td>
<td align="right">0.400</td>
<td align="right">51.3</td>
<td align="right">76.3%</td>
<td align="right">49.5</td>
</tr>
<tr>
<td>ViT-L/14</td>
<td align="right">83.5%</td>
<td align="right">86.3%</td>
<td align="right">77.6%</td>
<td align="right">0.333</td>
<td align="right">0.396</td>
<td align="right">53.1</td>
<td align="right">79.8%</td>
<td align="right">54.0</td>
</tr>
<tr>
<td>ViT-g/14</td>
<td align="right">83.5%</td>
<td align="right">86.5%</td>
<td align="right">78.4%</td>
<td align="right">0.298</td>
<td align="right">0.362</td>
<td align="right">53.0</td>
<td align="right">81.6%</td>
<td align="right">52.3</td>
</tr>
</table>
## Environmental Impact
- **Hardware Type:** Nvidia A100
- **Hours used:** 22,000 for ViT-g, 4,500 for ViT-S distillation, 5,300 for ViT-B distillation, 8,000 for ViT-L distillation
- **Cloud Provider:** Private infra
- **Compute Region:** USA
- **Carbon Emitted:** 7t CO2eq
#### Hardware
Nvidia A100 GPUs
#### Software
PyTorch 2.0,
xFormers 0.0.18
**BibTeX**
```
@misc{oquab2023dinov2,
title={DINOv2: Learning Robust Visual Features without Supervision},
author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
journal={arXiv:2304.07193},
year={2023}
}
```

View File

@@ -0,0 +1,277 @@
# DINOv2: Learning Robust Visual Features without Supervision
**[Meta AI Research, FAIR](https://ai.facebook.com/research/)**
Maxime Oquab,
Timothée Darcet,
Théo Moutakanni,
Huy V. Vo,
Marc Szafraniec,
Vasil Khalidov,
Patrick Labatut,
Armand Joulin,
Piotr Bojanowski
[[`Paper`](https://arxiv.org/abs/2304.07193)] [[`Blog`](https://ai.facebook.com/blog/dino-v2-computer-vision-self-supervised-learning/)] [[`Demo`](https://dinov2.metademolab.com)] [[`BibTeX`](#citing-dinov2)]
PyTorch implementation and pretrained models for DINOv2. For details, see the paper: **[DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)**.
DINOv2 models produce high-performance visual features that can be directly employed with classifiers as simple as linear layers on a variety of computer vision tasks; these visual features are robust and perform well across domains without any requirement for fine-tuning. The models were pretrained on a dataset of 142 M images without using any labels or annotations.
https://github.com/facebookresearch/dinov2/assets/60359573/f168823e-7922-415a-b429-578badf5c356
<div align="center">
Visualization of the three first principal components of the patch features of all frames, mapped to RGB values.
</div>
## Pretrained models
<table style="margin: auto">
<tr>
<th>model</th>
<th># of<br />params</th>
<th>ImageNet<br />k-NN</th>
<th>ImageNet<br />linear</th>
<th>download</th>
</tr>
<tr>
<td>ViT-S/14 distilled</td>
<td align="right">21 M</td>
<td align="right">79.0%</td>
<td align="right">81.1%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth">backbone only</a></td>
</tr>
<tr>
<td>ViT-B/14 distilled</td>
<td align="right">86 M</td>
<td align="right">82.1%</td>
<td align="right">84.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth">backbone only</a></td>
</tr>
<tr>
<td>ViT-L/14 distilled</td>
<td align="right">300 M</td>
<td align="right">83.5%</td>
<td align="right">86.3%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth">backbone only</a></td>
</tr>
<tr>
<td>ViT-g/14</td>
<td align="right">1,100 M</td>
<td align="right">83.5%</td>
<td align="right">86.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth">backbone only</a></td>
</tr>
</table>
### Pretrained models via PyTorch Hub
Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install PyTorch (the only required dependency for loading the model). Installing PyTorch with CUDA support is strongly recommended.
A corresponding [model card](MODEL_CARD.md) is included in the repository.
```python
import torch
dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')
```
## Installation
The training and evaluation code requires PyTorch 2.0 and [xFormers](https://github.com/facebookresearch/xformers) 0.0.18 as well as a number of other 3rd party packages. Note that the code has only been tested with the specified versions and also expects a Linux environment. To setup all the required dependencies for training and evaluation, please follow the instructions below:
*[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html)* **(Recommended)** - Clone the repository and then create and activate a `dinov2` conda environment using the provided environment definition:
```shell
conda env create -f conda.yaml
conda activate dinov2
```
*[pip](https://pip.pypa.io/en/stable/getting-started/)* - Clone the repository and then use the provided `requirements.txt` to install the dependencies:
```shell
pip install -r requirements.txt
```
## Data preparation
### ImageNet-1k
The root directory of the dataset should hold the following contents:
- `<ROOT>/test/ILSVRC2012_test_00000001.JPEG`
- `<ROOT>/test/[..]`
- `<ROOT>/test/ILSVRC2012_test_00100000.JPEG`
- `<ROOT>/train/n01440764/n01440764_10026.JPEG`
- `<ROOT>/train/[...]`
- `<ROOT>/train/n15075141/n15075141_9993.JPEG`
- `<ROOT>/val/n01440764/ILSVRC2012_val_00000293.JPEG`
- `<ROOT>/val/[...]`
- `<ROOT>/val/n15075141/ILSVRC2012_val_00049174.JPEG`
- `<ROOT>/labels.txt`
The provided dataset implementation expects a few additional metadata files to be present under the extra directory:
- `<EXTRA>/class-ids-TRAIN.npy`
- `<EXTRA>/class-ids-VAL.npy`
- `<EXTRA>/class-names-TRAIN.npy`
- `<EXTRA>/class-names-VAL.npy`
- `<EXTRA>/entries-TEST.npy`
- `<EXTRA>/entries-TRAIN.npy`
- `<EXTRA>/entries-VAL.npy`
These metadata files can be generated (once) with the following lines of Python code:
```python
from dinov2.data.datasets import ImageNet
for split in ImageNet.Split:
dataset = ImageNet(split=split, root="<ROOT>", extra="<EXTRA>")
dataset.dump_extra()
```
Note that the root and extra directories do not have to be distinct directories.
### ImageNet-22k
Please adapt the [dataset class](dinov2/data/datasets/image_net_22k.py) to match your local setup.
<br />
:warning: To execute the commands provided in the next sections for training and evaluation, the `dinov2` package should be included in the Python module search path, i.e. simply prefix the command to run with `PYTHONPATH=.`.
## Training
### Fast setup: training DINOv2 ViT-L/16 on ImageNet-1k
Run DINOv2 training on 4 A100-80GB nodes (32 GPUs) in a SLURM cluster environment with submitit:
```shell
python dinov2/run/train/train.py \
--nodes 4 \
--config-file dinov2/configs/train/vitl16_short.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
Training time is approximately 1 day and the resulting checkpoint should reach 81.6% on k-NN eval and 82.9% on linear eval.
The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.
### Long setup: training DINOv2 ViT-L/14 on ImageNet-22k
Run DINOv2 training on 12 A100-80GB nodes (96 GPUs) in a SLURM cluster environment with submitit:
```shell
python dinov2/run/train/train.py \
--nodes 12 \
--config-file dinov2/configs/train/vitl14.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=ImageNet22k:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
Training time is approximately 3.3 days and the resulting checkpoint should reach 82.0% on k-NN eval and 84.5% on linear eval.
The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.
## Evaluation
The training code regularly saves the teacher weights. In order to evaluate the model, run the following evaluation on a single node:
### k-NN classification on ImageNet-1k
```shell
python dinov2/run/eval/knn.py \
--config-file <PATH/TO/OUTPUT/DIR>/config.yaml \
--pretrained-weights <PATH/TO/OUTPUT/DIR>/eval/training_24999/teacher_checkpoint.pth \
--output-dir <PATH/TO/OUTPUT/DIR>/eval/training_24999/knn \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
### Logistic regression classification on ImageNet-1k
```shell
python dinov2/run/eval/log_regression.py \
--config-file <PATH/TO/OUTPUT/DIR>/config.yaml \
--pretrained-weights <PATH/TO/OUTPUT/DIR>/eval/training_24999/teacher_checkpoint.pth \
--output-dir <PATH/TO/OUTPUT/DIR>/eval/training_24999/logreg \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
### Linear classification with data augmentation on ImageNet-1k
```shell
python dinov2/run/eval/linear.py \
--config-file <PATH/TO/OUTPUT/DIR>/config.yaml \
--pretrained-weights <PATH/TO/OUTPUT/DIR>/eval/training_24999/teacher_checkpoint.pth \
--output-dir <PATH/TO/OUTPUT/DIR>/eval/training_24999/linear \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
We release the weights from evaluating the different models:
<table style="margin: auto">
<tr>
<th>model</th>
<th>ImageNet<br />top-1</th>
<th>linear evaluation</th>
</tr>
<tr>
<td>ViT-S/14 distilled</td>
<td align="right">81.1%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth">linear head weights</a></td>
</tr>
<tr>
<td>ViT-B/14 distilled</td>
<td align="right">84.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth">linear head weights</a></td>
</tr>
<tr>
<td>ViT-L/14 distilled</td>
<td align="right">86.3%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth">linear head weights</a></td>
</tr>
<tr>
<td>ViT-g/14</td>
<td align="right">86.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth">linear head weights</a></td>
</tr>
</table>
The performance of the provided pretrained model weights can be evaluated as follows on ImageNet-1k:
```shell
python dinov2/run/eval/linear.py \
--config-file dinov2/configs/eval/vitg14_pretrain.yaml \
--pretrained-weights https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
## License
DINOv2 code and model weights are released under the CC-BY-NC 4.0 license. See [LICENSE](LICENSE) for additional details.
## Contributing
See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).
## Citing DINOv2
If you find this repository useful, please consider giving a star :star: and citation :t-rex::
```
@misc{oquab2023dinov2,
title={DINOv2: Learning Robust Visual Features without Supervision},
author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy V. and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
journal={arXiv:2304.07193},
year={2023}
}
```

View File

@@ -0,0 +1,22 @@
name: dinov2
channels:
- defaults
- pytorch
- nvidia
- xformers
- conda-forge
dependencies:
- python=3.9
- pytorch::pytorch=2.0.0
- pytorch::pytorch-cuda=11.7.0
- pytorch::torchvision=0.15.0
- omegaconf
- torchmetrics=0.10.3
- fvcore
- iopath
- xformers::xformers=0.0.18
- pip
- pip:
- git+https://github.com/facebookincubator/submitit
- --extra-index-url https://pypi.nvidia.com
- cuml-cu11

View File

@@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
__version__ = "0.0.1"

View File

@@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import pathlib
from omegaconf import OmegaConf
def load_config(config_name: str):
config_filename = config_name + ".yaml"
return OmegaConf.load(pathlib.Path(__file__).parent.resolve() / config_filename)
dinov2_default_config = load_config("ssl_default_config")
def load_and_merge_config(config_name: str):
default_config = OmegaConf.create(dinov2_default_config)
loaded_config = load_config(config_name)
return OmegaConf.merge(default_config, loaded_config)

View File

@@ -0,0 +1,6 @@
student:
arch: vit_base
patch_size: 14
crops:
global_crops_size: 518 # this is to set up the position embeddings properly
local_crops_size: 98

View File

@@ -0,0 +1,7 @@
student:
arch: vit_giant2
patch_size: 14
ffn_layer: swiglufused
crops:
global_crops_size: 518 # this is to set up the position embeddings properly
local_crops_size: 98

View File

@@ -0,0 +1,6 @@
student:
arch: vit_large
patch_size: 14
crops:
global_crops_size: 518 # this is to set up the position embeddings properly
local_crops_size: 98

View File

@@ -0,0 +1,6 @@
student:
arch: vit_small
patch_size: 14
crops:
global_crops_size: 518 # this is to set up the position embeddings properly
local_crops_size: 98

View File

@@ -0,0 +1,115 @@
MODEL:
WEIGHTS: ''
compute_precision:
grad_scaler: true
teacher:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
student:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
dino:
loss_weight: 1.0
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
koleo_loss_weight: 0.1
ibot:
loss_weight: 1.0
mask_sample_probability: 0.5
mask_ratio_min_max:
- 0.1
- 0.5
separate_head: false
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
train:
batch_size_per_gpu: 64
dataset_path: ImageNet:split=TRAIN
output_dir: .
saveckp_freq: 20
seed: 0
num_workers: 10
OFFICIAL_EPOCH_LENGTH: 1250
cache_dataset: true
centering: "centering" # or "sinkhorn_knopp"
student:
arch: vit_large
patch_size: 16
drop_path_rate: 0.3
layerscale: 1.0e-05
drop_path_uniform: true
pretrained_weights: ''
ffn_layer: "mlp"
block_chunks: 0
qkv_bias: true
proj_bias: true
ffn_bias: true
teacher:
momentum_teacher: 0.992
final_momentum_teacher: 1
warmup_teacher_temp: 0.04
teacher_temp: 0.07
warmup_teacher_temp_epochs: 30
optim:
epochs: 100
weight_decay: 0.04
weight_decay_end: 0.4
base_lr: 0.004 # learning rate for a batch size of 1024
lr: 0. # will be set after applying scaling rule
warmup_epochs: 10
min_lr: 1.0e-06
clip_grad: 3.0
freeze_last_layer_epochs: 1
scaling_rule: sqrt_wrt_1024
patch_embed_lr_mult: 0.2
layerwise_decay: 0.9
adamw_beta1: 0.9
adamw_beta2: 0.999
crops:
global_crops_scale:
- 0.32
- 1.0
local_crops_number: 8
local_crops_scale:
- 0.05
- 0.32
global_crops_size: 224
local_crops_size: 96
evaluation:
eval_period_iterations: 12500

View File

@@ -0,0 +1,26 @@
dino:
head_n_prototypes: 131072
head_bottleneck_dim: 384
ibot:
separate_head: true
head_n_prototypes: 131072
train:
batch_size_per_gpu: 12
dataset_path: ImageNet22k
centering: sinkhorn_knopp
student:
arch: vit_giant2
patch_size: 14
drop_path_rate: 0.4
ffn_layer: swiglufused
block_chunks: 4
teacher:
momentum_teacher: 0.994
optim:
epochs: 500
weight_decay_end: 0.2
base_lr: 2.0e-04 # learning rate for a batch size of 1024
warmup_epochs: 80
layerwise_decay: 1.0
crops:
local_crops_size: 98

View File

@@ -0,0 +1,26 @@
dino:
head_n_prototypes: 131072
head_bottleneck_dim: 384
ibot:
separate_head: true
head_n_prototypes: 131072
train:
batch_size_per_gpu: 32
dataset_path: ImageNet22k
centering: sinkhorn_knopp
student:
arch: vit_large
patch_size: 14
drop_path_rate: 0.4
ffn_layer: swiglufused
block_chunks: 4
teacher:
momentum_teacher: 0.994
optim:
epochs: 500
weight_decay_end: 0.2
base_lr: 2.0e-04 # learning rate for a batch size of 1024
warmup_epochs: 80
layerwise_decay: 1.0
crops:
local_crops_size: 98

View File

@@ -0,0 +1,6 @@
# this corresponds to the default config
train:
dataset_path: ImageNet:split=TRAIN
batch_size_per_gpu: 64
student:
block_chunks: 4

View File

@@ -0,0 +1,11 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .adapters import DatasetWithEnumeratedTargets
from .loaders import make_data_loader, make_dataset, SamplerType
from .collate import collate_data_and_cast
from .masking import MaskingGenerator
from .augmentations import DataAugmentationDINO

View File

@@ -0,0 +1,29 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Tuple
from torch.utils.data import Dataset
class DatasetWithEnumeratedTargets(Dataset):
def __init__(self, dataset):
self._dataset = dataset
def get_image_data(self, index: int) -> bytes:
return self._dataset.get_image_data(index)
def get_target(self, index: int) -> Tuple[Any, int]:
target = self._dataset.get_target(index)
return (index, target)
def __getitem__(self, index: int) -> Tuple[Any, Tuple[Any, int]]:
image, target = self._dataset[index]
target = index if target is None else target
return image, (index, target)
def __len__(self) -> int:
return len(self._dataset)

View File

@@ -0,0 +1,119 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
from torchvision import transforms
from .transforms import (
GaussianBlur,
make_normalize_transform,
)
logger = logging.getLogger("dinov2")
class DataAugmentationDINO(object):
def __init__(
self,
global_crops_scale,
local_crops_scale,
local_crops_number,
global_crops_size=224,
local_crops_size=96,
):
self.global_crops_scale = global_crops_scale
self.local_crops_scale = local_crops_scale
self.local_crops_number = local_crops_number
self.global_crops_size = global_crops_size
self.local_crops_size = local_crops_size
logger.info("###################################")
logger.info("Using data augmentation parameters:")
logger.info(f"global_crops_scale: {global_crops_scale}")
logger.info(f"local_crops_scale: {local_crops_scale}")
logger.info(f"local_crops_number: {local_crops_number}")
logger.info(f"global_crops_size: {global_crops_size}")
logger.info(f"local_crops_size: {local_crops_size}")
logger.info("###################################")
# random resized crop and flip
self.geometric_augmentation_global = transforms.Compose(
[
transforms.RandomResizedCrop(
global_crops_size, scale=global_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
),
transforms.RandomHorizontalFlip(p=0.5),
]
)
self.geometric_augmentation_local = transforms.Compose(
[
transforms.RandomResizedCrop(
local_crops_size, scale=local_crops_scale, interpolation=transforms.InterpolationMode.BICUBIC
),
transforms.RandomHorizontalFlip(p=0.5),
]
)
# color distorsions / blurring
color_jittering = transforms.Compose(
[
transforms.RandomApply(
[transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)],
p=0.8,
),
transforms.RandomGrayscale(p=0.2),
]
)
global_transfo1_extra = GaussianBlur(p=1.0)
global_transfo2_extra = transforms.Compose(
[
GaussianBlur(p=0.1),
transforms.RandomSolarize(threshold=128, p=0.2),
]
)
local_transfo_extra = GaussianBlur(p=0.5)
# normalization
self.normalize = transforms.Compose(
[
transforms.ToTensor(),
make_normalize_transform(),
]
)
self.global_transfo1 = transforms.Compose([color_jittering, global_transfo1_extra, self.normalize])
self.global_transfo2 = transforms.Compose([color_jittering, global_transfo2_extra, self.normalize])
self.local_transfo = transforms.Compose([color_jittering, local_transfo_extra, self.normalize])
def __call__(self, image):
output = {}
# global crops:
im1_base = self.geometric_augmentation_global(image)
global_crop_1 = self.global_transfo1(im1_base)
im2_base = self.geometric_augmentation_global(image)
global_crop_2 = self.global_transfo2(im2_base)
output["global_crops"] = [global_crop_1, global_crop_2]
# global crops for teacher:
output["global_crops_teacher"] = [global_crop_1, global_crop_2]
# local crops:
local_crops = [
self.local_transfo(self.geometric_augmentation_local(image)) for _ in range(self.local_crops_number)
]
output["local_crops"] = local_crops
output["offsets"] = ()
return output

View File

@@ -0,0 +1,50 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import random
def collate_data_and_cast(samples_list, mask_ratio_tuple, mask_probability, dtype, n_tokens=None, mask_generator=None):
# dtype = torch.half # TODO: Remove
n_global_crops = len(samples_list[0][0]["global_crops"])
n_local_crops = len(samples_list[0][0]["local_crops"])
collated_global_crops = torch.stack([s[0]["global_crops"][i] for i in range(n_global_crops) for s in samples_list])
collated_local_crops = torch.stack([s[0]["local_crops"][i] for i in range(n_local_crops) for s in samples_list])
B = len(collated_global_crops)
N = n_tokens
n_samples_masked = int(B * mask_probability)
probs = torch.linspace(*mask_ratio_tuple, n_samples_masked + 1)
upperbound = 0
masks_list = []
for i in range(0, n_samples_masked):
prob_min = probs[i]
prob_max = probs[i + 1]
masks_list.append(torch.BoolTensor(mask_generator(int(N * random.uniform(prob_min, prob_max)))))
upperbound += int(N * prob_max)
for i in range(n_samples_masked, B):
masks_list.append(torch.BoolTensor(mask_generator(0)))
random.shuffle(masks_list)
collated_masks = torch.stack(masks_list).flatten(1)
mask_indices_list = collated_masks.flatten().nonzero().flatten()
masks_weight = (1 / collated_masks.sum(-1).clamp(min=1.0)).unsqueeze(-1).expand_as(collated_masks)[collated_masks]
return {
"collated_global_crops": collated_global_crops.to(dtype),
"collated_local_crops": collated_local_crops.to(dtype),
"collated_masks": collated_masks,
"mask_indices_list": mask_indices_list,
"masks_weight": masks_weight,
"upperbound": upperbound,
"n_masked_patches": torch.full((1,), fill_value=mask_indices_list.shape[0], dtype=torch.long),
}

View File

@@ -0,0 +1,8 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .image_net import ImageNet
from .image_net_22k import ImageNet22k

View File

@@ -0,0 +1,32 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from io import BytesIO
from typing import Any
from PIL import Image
class Decoder:
def decode(self) -> Any:
raise NotImplementedError
class ImageDataDecoder(Decoder):
def __init__(self, image_data: bytes) -> None:
self._image_data = image_data
def decode(self) -> Image:
f = BytesIO(self._image_data)
return Image.open(f).convert(mode="RGB")
class TargetDecoder(Decoder):
def __init__(self, target: Any):
self._target = target
def decode(self) -> Any:
return self._target

View File

@@ -0,0 +1,39 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Tuple
from torchvision.datasets import VisionDataset
from .decoders import TargetDecoder, ImageDataDecoder
class ExtendedVisionDataset(VisionDataset):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs) # type: ignore
def get_image_data(self, index: int) -> bytes:
raise NotImplementedError
def get_target(self, index: int) -> Any:
raise NotImplementedError
def __getitem__(self, index: int) -> Tuple[Any, Any]:
try:
image_data = self.get_image_data(index)
image = ImageDataDecoder(image_data).decode()
except Exception as e:
raise RuntimeError(f"can not read image for sample {index}") from e
target = self.get_target(index)
target = TargetDecoder(target).decode()
if self.transforms is not None:
image, target = self.transforms(image, target)
return image, target
def __len__(self) -> int:
raise NotImplementedError

View File

@@ -0,0 +1,291 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import csv
from enum import Enum
import logging
import os
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
from .extended import ExtendedVisionDataset
logger = logging.getLogger("dinov2")
_Target = int
class _Split(Enum):
TRAIN = "train"
VAL = "val"
TEST = "test" # NOTE: torchvision does not support the test split
@property
def length(self) -> int:
split_lengths = {
_Split.TRAIN: 1_281_167,
_Split.VAL: 50_000,
_Split.TEST: 100_000,
}
return split_lengths[self]
def get_dirname(self, class_id: Optional[str] = None) -> str:
return self.value if class_id is None else os.path.join(self.value, class_id)
def get_image_relpath(self, actual_index: int, class_id: Optional[str] = None) -> str:
dirname = self.get_dirname(class_id)
if self == _Split.TRAIN:
basename = f"{class_id}_{actual_index}"
else: # self in (_Split.VAL, _Split.TEST):
basename = f"ILSVRC2012_{self.value}_{actual_index:08d}"
return os.path.join(dirname, basename + ".JPEG")
def parse_image_relpath(self, image_relpath: str) -> Tuple[str, int]:
assert self != _Split.TEST
dirname, filename = os.path.split(image_relpath)
class_id = os.path.split(dirname)[-1]
basename, _ = os.path.splitext(filename)
actual_index = int(basename.split("_")[-1])
return class_id, actual_index
class ImageNet(ExtendedVisionDataset):
Target = Union[_Target]
Split = Union[_Split]
def __init__(
self,
*,
split: "ImageNet.Split",
root: str,
extra: str,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> None:
super().__init__(root, transforms, transform, target_transform)
self._extra_root = extra
self._split = split
self._entries = None
self._class_ids = None
self._class_names = None
@property
def split(self) -> "ImageNet.Split":
return self._split
def _get_extra_full_path(self, extra_path: str) -> str:
return os.path.join(self._extra_root, extra_path)
def _load_extra(self, extra_path: str) -> np.ndarray:
extra_full_path = self._get_extra_full_path(extra_path)
return np.load(extra_full_path, mmap_mode="r")
def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None:
extra_full_path = self._get_extra_full_path(extra_path)
os.makedirs(self._extra_root, exist_ok=True)
np.save(extra_full_path, extra_array)
@property
def _entries_path(self) -> str:
return f"entries-{self._split.value.upper()}.npy"
@property
def _class_ids_path(self) -> str:
return f"class-ids-{self._split.value.upper()}.npy"
@property
def _class_names_path(self) -> str:
return f"class-names-{self._split.value.upper()}.npy"
def _get_entries(self) -> np.ndarray:
if self._entries is None:
self._entries = self._load_extra(self._entries_path)
assert self._entries is not None
return self._entries
def _get_class_ids(self) -> np.ndarray:
if self._split == _Split.TEST:
assert False, "Class IDs are not available in TEST split"
if self._class_ids is None:
self._class_ids = self._load_extra(self._class_ids_path)
assert self._class_ids is not None
return self._class_ids
def _get_class_names(self) -> np.ndarray:
if self._split == _Split.TEST:
assert False, "Class names are not available in TEST split"
if self._class_names is None:
self._class_names = self._load_extra(self._class_names_path)
assert self._class_names is not None
return self._class_names
def find_class_id(self, class_index: int) -> str:
class_ids = self._get_class_ids()
return str(class_ids[class_index])
def find_class_name(self, class_index: int) -> str:
class_names = self._get_class_names()
return str(class_names[class_index])
def get_image_data(self, index: int) -> bytes:
entries = self._get_entries()
actual_index = entries[index]["actual_index"]
class_id = self.get_class_id(index)
image_relpath = self.split.get_image_relpath(actual_index, class_id)
image_full_path = os.path.join(self.root, image_relpath)
with open(image_full_path, mode="rb") as f:
image_data = f.read()
return image_data
def get_target(self, index: int) -> Optional[Target]:
entries = self._get_entries()
class_index = entries[index]["class_index"]
return None if self.split == _Split.TEST else int(class_index)
def get_targets(self) -> Optional[np.ndarray]:
entries = self._get_entries()
return None if self.split == _Split.TEST else entries["class_index"]
def get_class_id(self, index: int) -> Optional[str]:
entries = self._get_entries()
class_id = entries[index]["class_id"]
return None if self.split == _Split.TEST else str(class_id)
def get_class_name(self, index: int) -> Optional[str]:
entries = self._get_entries()
class_name = entries[index]["class_name"]
return None if self.split == _Split.TEST else str(class_name)
def __len__(self) -> int:
entries = self._get_entries()
assert len(entries) == self.split.length
return len(entries)
def _load_labels(self, labels_path: str) -> List[Tuple[str, str]]:
labels_full_path = os.path.join(self.root, labels_path)
labels = []
try:
with open(labels_full_path, "r") as f:
reader = csv.reader(f)
for row in reader:
class_id, class_name = row
labels.append((class_id, class_name))
except OSError as e:
raise RuntimeError(f'can not read labels file "{labels_full_path}"') from e
return labels
def _dump_entries(self) -> None:
split = self.split
if split == ImageNet.Split.TEST:
dataset = None
sample_count = split.length
max_class_id_length, max_class_name_length = 0, 0
else:
labels_path = "labels.txt"
logger.info(f'loading labels from "{labels_path}"')
labels = self._load_labels(labels_path)
# NOTE: Using torchvision ImageFolder for consistency
from torchvision.datasets import ImageFolder
dataset_root = os.path.join(self.root, split.get_dirname())
dataset = ImageFolder(dataset_root)
sample_count = len(dataset)
max_class_id_length, max_class_name_length = -1, -1
for sample in dataset.samples:
_, class_index = sample
class_id, class_name = labels[class_index]
max_class_id_length = max(len(class_id), max_class_id_length)
max_class_name_length = max(len(class_name), max_class_name_length)
dtype = np.dtype(
[
("actual_index", "<u4"),
("class_index", "<u4"),
("class_id", f"U{max_class_id_length}"),
("class_name", f"U{max_class_name_length}"),
]
)
entries_array = np.empty(sample_count, dtype=dtype)
if split == ImageNet.Split.TEST:
old_percent = -1
for index in range(sample_count):
percent = 100 * (index + 1) // sample_count
if percent > old_percent:
logger.info(f"creating entries: {percent}%")
old_percent = percent
actual_index = index + 1
class_index = np.uint32(-1)
class_id, class_name = "", ""
entries_array[index] = (actual_index, class_index, class_id, class_name)
else:
class_names = {class_id: class_name for class_id, class_name in labels}
assert dataset
old_percent = -1
for index in range(sample_count):
percent = 100 * (index + 1) // sample_count
if percent > old_percent:
logger.info(f"creating entries: {percent}%")
old_percent = percent
image_full_path, class_index = dataset.samples[index]
image_relpath = os.path.relpath(image_full_path, self.root)
class_id, actual_index = split.parse_image_relpath(image_relpath)
class_name = class_names[class_id]
entries_array[index] = (actual_index, class_index, class_id, class_name)
logger.info(f'saving entries to "{self._entries_path}"')
self._save_extra(entries_array, self._entries_path)
def _dump_class_ids_and_names(self) -> None:
split = self.split
if split == ImageNet.Split.TEST:
return
entries_array = self._load_extra(self._entries_path)
max_class_id_length, max_class_name_length, max_class_index = -1, -1, -1
for entry in entries_array:
class_index, class_id, class_name = (
entry["class_index"],
entry["class_id"],
entry["class_name"],
)
max_class_index = max(int(class_index), max_class_index)
max_class_id_length = max(len(str(class_id)), max_class_id_length)
max_class_name_length = max(len(str(class_name)), max_class_name_length)
class_count = max_class_index + 1
class_ids_array = np.empty(class_count, dtype=f"U{max_class_id_length}")
class_names_array = np.empty(class_count, dtype=f"U{max_class_name_length}")
for entry in entries_array:
class_index, class_id, class_name = (
entry["class_index"],
entry["class_id"],
entry["class_name"],
)
class_ids_array[class_index] = class_id
class_names_array[class_index] = class_name
logger.info(f'saving class IDs to "{self._class_ids_path}"')
self._save_extra(class_ids_array, self._class_ids_path)
logger.info(f'saving class names to "{self._class_names_path}"')
self._save_extra(class_names_array, self._class_names_path)
def dump_extra(self) -> None:
self._dump_entries()
self._dump_class_ids_and_names()

View File

@@ -0,0 +1,303 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from enum import Enum
from functools import lru_cache
from gzip import GzipFile
from io import BytesIO
from mmap import ACCESS_READ, mmap
import os
from typing import Any, Callable, List, Optional, Set, Tuple
import warnings
import numpy as np
from .extended import ExtendedVisionDataset
_Labels = int
_DEFAULT_MMAP_CACHE_SIZE = 16 # Warning: This can exhaust file descriptors
@dataclass
class _ClassEntry:
block_offset: int
maybe_filename: Optional[str] = None
@dataclass
class _Entry:
class_index: int # noqa: E701
start_offset: int
end_offset: int
filename: str
class _Split(Enum):
TRAIN = "train"
VAL = "val"
@property
def length(self) -> int:
return {
_Split.TRAIN: 11_797_647,
_Split.VAL: 561_050,
}[self]
def entries_path(self):
return f"imagenet21kp_{self.value}.txt"
def _get_tarball_path(class_id: str) -> str:
return f"{class_id}.tar"
def _make_mmap_tarball(tarballs_root: str, mmap_cache_size: int):
@lru_cache(maxsize=mmap_cache_size)
def _mmap_tarball(class_id: str) -> mmap:
tarball_path = _get_tarball_path(class_id)
tarball_full_path = os.path.join(tarballs_root, tarball_path)
with open(tarball_full_path) as f:
return mmap(fileno=f.fileno(), length=0, access=ACCESS_READ)
return _mmap_tarball
class ImageNet22k(ExtendedVisionDataset):
_GZIPPED_INDICES: Set[int] = {
841_545,
1_304_131,
2_437_921,
2_672_079,
2_795_676,
2_969_786,
6_902_965,
6_903_550,
6_903_628,
7_432_557,
7_432_589,
7_813_809,
8_329_633,
10_296_990,
10_417_652,
10_492_265,
10_598_078,
10_782_398,
10_902_612,
11_203_736,
11_342_890,
11_397_596,
11_589_762,
11_705_103,
12_936_875,
13_289_782,
}
Labels = _Labels
def __init__(
self,
*,
root: str,
extra: str,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
mmap_cache_size: int = _DEFAULT_MMAP_CACHE_SIZE,
) -> None:
super().__init__(root, transforms, transform, target_transform)
self._extra_root = extra
entries_path = self._get_entries_path(root)
self._entries = self._load_extra(entries_path)
class_ids_path = self._get_class_ids_path(root)
self._class_ids = self._load_extra(class_ids_path)
self._gzipped_indices = ImageNet22k._GZIPPED_INDICES
self._mmap_tarball = _make_mmap_tarball(self._tarballs_root, mmap_cache_size)
def _get_entries_path(self, root: Optional[str] = None) -> str:
return "entries.npy"
def _get_class_ids_path(self, root: Optional[str] = None) -> str:
return "class-ids.npy"
def _find_class_ids(self, path: str) -> List[str]:
class_ids = []
with os.scandir(path) as entries:
for entry in entries:
root, ext = os.path.splitext(entry.name)
if ext != ".tar":
continue
class_ids.append(root)
return sorted(class_ids)
def _load_entries_class_ids(self, root: Optional[str] = None) -> Tuple[List[_Entry], List[str]]:
root = self.get_root(root)
entries: List[_Entry] = []
class_ids = self._find_class_ids(root)
for class_index, class_id in enumerate(class_ids):
path = os.path.join(root, "blocks", f"{class_id}.log")
class_entries = []
try:
with open(path) as f:
for line in f:
line = line.rstrip()
block, filename = line.split(":")
block_offset = int(block[6:])
filename = filename[1:]
maybe_filename = None
if filename != "** Block of NULs **":
maybe_filename = filename
_, ext = os.path.splitext(filename)
# assert ext == ".JPEG"
class_entry = _ClassEntry(block_offset, maybe_filename)
class_entries.append(class_entry)
except OSError as e:
raise RuntimeError(f'can not read blocks file "{path}"') from e
assert class_entries[-1].maybe_filename is None
for class_entry1, class_entry2 in zip(class_entries, class_entries[1:]):
assert class_entry1.block_offset <= class_entry2.block_offset
start_offset = 512 * class_entry1.block_offset
end_offset = 512 * class_entry2.block_offset
assert class_entry1.maybe_filename is not None
filename = class_entry1.maybe_filename
entry = _Entry(class_index, start_offset, end_offset, filename)
# Skip invalid image files (PIL throws UnidentifiedImageError)
if filename == "n06470073_47249.JPEG":
continue
entries.append(entry)
return entries, class_ids
def _load_extra(self, extra_path: str) -> np.ndarray:
extra_root = self._extra_root
extra_full_path = os.path.join(extra_root, extra_path)
return np.load(extra_full_path, mmap_mode="r")
def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None:
extra_root = self._extra_root
extra_full_path = os.path.join(extra_root, extra_path)
os.makedirs(extra_root, exist_ok=True)
np.save(extra_full_path, extra_array)
@property
def _tarballs_root(self) -> str:
return self.root
def find_class_id(self, class_index: int) -> str:
return str(self._class_ids[class_index])
def get_image_data(self, index: int) -> bytes:
entry = self._entries[index]
class_id = entry["class_id"]
class_mmap = self._mmap_tarball(class_id)
start_offset, end_offset = entry["start_offset"], entry["end_offset"]
try:
mapped_data = class_mmap[start_offset:end_offset]
data = mapped_data[512:] # Skip entry header block
if len(data) >= 2 and tuple(data[:2]) == (0x1F, 0x8B):
assert index in self._gzipped_indices, f"unexpected gzip header for sample {index}"
with GzipFile(fileobj=BytesIO(data)) as g:
data = g.read()
except Exception as e:
raise RuntimeError(f"can not retrieve image data for sample {index} " f'from "{class_id}" tarball') from e
return data
def get_target(self, index: int) -> Any:
return int(self._entries[index]["class_index"])
def get_targets(self) -> np.ndarray:
return self._entries["class_index"]
def get_class_id(self, index: int) -> str:
return str(self._entries[index]["class_id"])
def get_class_ids(self) -> np.ndarray:
return self._entries["class_id"]
def __getitem__(self, index: int) -> Tuple[Any, Any]:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return super().__getitem__(index)
def __len__(self) -> int:
return len(self._entries)
def _dump_entries(self, *args, **kwargs) -> None:
entries, class_ids = self._load_entries_class_ids(*args, **kwargs)
max_class_id_length, max_filename_length, max_class_index = -1, -1, -1
for entry in entries:
class_id = class_ids[entry.class_index]
max_class_index = max(entry.class_index, max_class_index)
max_class_id_length = max(len(class_id), max_class_id_length)
max_filename_length = max(len(entry.filename), max_filename_length)
dtype = np.dtype(
[
("class_index", "<u4"),
("class_id", f"U{max_class_id_length}"),
("start_offset", "<u4"),
("end_offset", "<u4"),
("filename", f"U{max_filename_length}"),
]
)
sample_count = len(entries)
entries_array = np.empty(sample_count, dtype=dtype)
for i, entry in enumerate(entries):
class_index = entry.class_index
class_id = class_ids[class_index]
start_offset = entry.start_offset
end_offset = entry.end_offset
filename = entry.filename
entries_array[i] = (
class_index,
class_id,
start_offset,
end_offset,
filename,
)
entries_path = self._get_entries_path(*args, **kwargs)
self._save_extra(entries_array, entries_path)
def _dump_class_ids(self, *args, **kwargs) -> None:
entries_path = self._get_entries_path(*args, **kwargs)
entries_array = self._load_extra(entries_path)
max_class_id_length, max_class_index = -1, -1
for entry in entries_array:
class_index, class_id = entry["class_index"], entry["class_id"]
max_class_index = max(int(class_index), max_class_index)
max_class_id_length = max(len(str(class_id)), max_class_id_length)
class_ids_array = np.empty(max_class_index + 1, dtype=f"U{max_class_id_length}")
for entry in entries_array:
class_index, class_id = entry["class_index"], entry["class_id"]
class_ids_array[class_index] = class_id
class_ids_path = self._get_class_ids_path(*args, **kwargs)
self._save_extra(class_ids_array, class_ids_path)
def _dump_extra(self, *args, **kwargs) -> None:
self._dump_entries(*args, *kwargs)
self._dump_class_ids(*args, *kwargs)
def dump_extra(self, root: Optional[str] = None) -> None:
return self._dump_extra(root)

View File

@@ -0,0 +1,223 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
from enum import Enum
from typing import Any, Callable, List, Optional, TypeVar
import torch
from torch.utils.data import Sampler
from .datasets import ImageNet, ImageNet22k
from .samplers import EpochSampler, InfiniteSampler, ShardedInfiniteSampler
logger = logging.getLogger("dinov2")
class SamplerType(Enum):
DISTRIBUTED = 0
EPOCH = 1
INFINITE = 2
SHARDED_INFINITE = 3
SHARDED_INFINITE_NEW = 4
def _make_bool_str(b: bool) -> str:
return "yes" if b else "no"
def _make_sample_transform(image_transform: Optional[Callable] = None, target_transform: Optional[Callable] = None):
def transform(sample):
image, target = sample
if image_transform is not None:
image = image_transform(image)
if target_transform is not None:
target = target_transform(target)
return image, target
return transform
def _parse_dataset_str(dataset_str: str):
tokens = dataset_str.split(":")
name = tokens[0]
kwargs = {}
for token in tokens[1:]:
key, value = token.split("=")
assert key in ("root", "extra", "split")
kwargs[key] = value
if name == "ImageNet":
class_ = ImageNet
if "split" in kwargs:
kwargs["split"] = ImageNet.Split[kwargs["split"]]
elif name == "ImageNet22k":
class_ = ImageNet22k
else:
raise ValueError(f'Unsupported dataset "{name}"')
return class_, kwargs
def make_dataset(
*,
dataset_str: str,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
):
"""
Creates a dataset with the specified parameters.
Args:
dataset_str: A dataset string description (e.g. ImageNet:split=TRAIN).
transform: A transform to apply to images.
target_transform: A transform to apply to targets.
Returns:
The created dataset.
"""
logger.info(f'using dataset: "{dataset_str}"')
class_, kwargs = _parse_dataset_str(dataset_str)
dataset = class_(transform=transform, target_transform=target_transform, **kwargs)
logger.info(f"# of dataset samples: {len(dataset):,d}")
# Aggregated datasets do not expose (yet) these attributes, so add them.
if not hasattr(dataset, "transform"):
setattr(dataset, "transform", transform)
if not hasattr(dataset, "target_transform"):
setattr(dataset, "target_transform", target_transform)
return dataset
def _make_sampler(
*,
dataset,
type: Optional[SamplerType] = None,
shuffle: bool = False,
seed: int = 0,
size: int = -1,
advance: int = 0,
) -> Optional[Sampler]:
sample_count = len(dataset)
if type == SamplerType.INFINITE:
logger.info("sampler: infinite")
if size > 0:
raise ValueError("sampler size > 0 is invalid")
return InfiniteSampler(
sample_count=sample_count,
shuffle=shuffle,
seed=seed,
advance=advance,
)
elif type in (SamplerType.SHARDED_INFINITE, SamplerType.SHARDED_INFINITE_NEW):
logger.info("sampler: sharded infinite")
if size > 0:
raise ValueError("sampler size > 0 is invalid")
# TODO: Remove support for old shuffling
use_new_shuffle_tensor_slice = type == SamplerType.SHARDED_INFINITE_NEW
return ShardedInfiniteSampler(
sample_count=sample_count,
shuffle=shuffle,
seed=seed,
advance=advance,
use_new_shuffle_tensor_slice=use_new_shuffle_tensor_slice,
)
elif type == SamplerType.EPOCH:
logger.info("sampler: epoch")
if advance > 0:
raise NotImplementedError("sampler advance > 0 is not supported")
size = size if size > 0 else sample_count
logger.info(f"# of samples / epoch: {size:,d}")
return EpochSampler(
size=size,
sample_count=sample_count,
shuffle=shuffle,
seed=seed,
)
elif type == SamplerType.DISTRIBUTED:
logger.info("sampler: distributed")
if size > 0:
raise ValueError("sampler size > 0 is invalid")
if advance > 0:
raise ValueError("sampler advance > 0 is invalid")
return torch.utils.data.DistributedSampler(
dataset=dataset,
shuffle=shuffle,
seed=seed,
drop_last=False,
)
logger.info("sampler: none")
return None
T = TypeVar("T")
def make_data_loader(
*,
dataset,
batch_size: int,
num_workers: int,
shuffle: bool = True,
seed: int = 0,
sampler_type: Optional[SamplerType] = SamplerType.INFINITE,
sampler_size: int = -1,
sampler_advance: int = 0,
drop_last: bool = True,
persistent_workers: bool = False,
collate_fn: Optional[Callable[[List[T]], Any]] = None,
):
"""
Creates a data loader with the specified parameters.
Args:
dataset: A dataset (third party, LaViDa or WebDataset).
batch_size: The size of batches to generate.
num_workers: The number of workers to use.
shuffle: Whether to shuffle samples.
seed: The random seed to use.
sampler_type: Which sampler to use: EPOCH, INFINITE, SHARDED_INFINITE, SHARDED_INFINITE_NEW, DISTRIBUTED or None.
sampler_size: The number of images per epoch (when applicable) or -1 for the entire dataset.
sampler_advance: How many samples to skip (when applicable).
drop_last: Whether the last non-full batch of data should be dropped.
persistent_workers: maintain the workers Dataset instances alive after a dataset has been consumed once.
collate_fn: Function that performs batch collation
"""
sampler = _make_sampler(
dataset=dataset,
type=sampler_type,
shuffle=shuffle,
seed=seed,
size=sampler_size,
advance=sampler_advance,
)
logger.info("using PyTorch data loader")
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
drop_last=drop_last,
persistent_workers=persistent_workers,
collate_fn=collate_fn,
)
try:
logger.info(f"# of batches: {len(data_loader):,d}")
except TypeError: # data loader has no length
logger.info("infinite data loader")
return data_loader

View File

@@ -0,0 +1,87 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import random
import math
import numpy as np
class MaskingGenerator:
def __init__(
self,
input_size,
num_masking_patches=None,
min_num_patches=4,
max_num_patches=None,
min_aspect=0.3,
max_aspect=None,
):
if not isinstance(input_size, tuple):
input_size = (input_size,) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.num_masking_patches = num_masking_patches
self.min_num_patches = min_num_patches
self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches
max_aspect = max_aspect or 1 / min_aspect
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
def __repr__(self):
repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height,
self.width,
self.min_num_patches,
self.max_num_patches,
self.num_masking_patches,
self.log_aspect_ratio[0],
self.log_aspect_ratio[1],
)
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for _ in range(10):
target_area = random.uniform(self.min_num_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < self.width and h < self.height:
top = random.randint(0, self.height - h)
left = random.randint(0, self.width - w)
num_masked = mask[top : top + h, left : left + w].sum()
# Overlap
if 0 < h * w - num_masked <= max_mask_patches:
for i in range(top, top + h):
for j in range(left, left + w):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self, num_masking_patches=0):
mask = np.zeros(shape=self.get_shape(), dtype=bool)
mask_count = 0
while mask_count < num_masking_patches:
max_mask_patches = num_masking_patches - mask_count
max_mask_patches = min(max_mask_patches, self.max_num_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return mask

View File

@@ -0,0 +1,230 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import itertools
from typing import Any, Optional
import warnings
import numpy as np
import torch
from torch.utils.data.sampler import Sampler
import dinov2.distributed as distributed
class EpochSampler(Sampler):
def __init__(
self,
*,
size: int,
sample_count: int,
shuffle: bool = False,
seed: int = 0,
start: Optional[int] = None,
step: Optional[int] = None,
):
self._size = size
self._sample_count = sample_count
self._shuffle = shuffle
self._seed = seed
self._start = distributed.get_global_rank() if start is None else start
self._step = distributed.get_global_size() if step is None else step
self._epoch = 0
def __iter__(self):
count = (self._size + self._sample_count - 1) // self._sample_count
tiled_indices = np.tile(np.arange(self._sample_count), count)
if self._shuffle:
seed = self._seed * self._epoch if self._seed != 0 else self._epoch
rng = np.random.default_rng(seed)
iterable = rng.choice(tiled_indices, self._size, replace=False)
else:
iterable = tiled_indices[: self._size]
yield from itertools.islice(iterable, self._start, None, self._step)
def __len__(self):
return (self._size - self._start + self._step - 1) // self._step
def set_epoch(self, epoch):
self._epoch = epoch
def _get_numpy_dtype(size: int) -> Any:
return np.int32 if size <= 2**31 else np.int64
def _get_torch_dtype(size: int) -> Any:
return torch.int32 if size <= 2**31 else torch.int64
def _generate_randperm_indices(*, size: int, generator: torch.Generator):
"""Generate the indices of a random permutation."""
dtype = _get_torch_dtype(size)
# This is actually matching PyTorch's CPU implementation, see: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/TensorFactories.cpp#L900-L921
perm = torch.arange(size, dtype=dtype)
for i in range(size):
j = torch.randint(i, size, size=(1,), generator=generator).item()
# Always swap even if no-op
value = perm[j].item()
perm[j] = perm[i].item()
perm[i] = value
yield value
class InfiniteSampler(Sampler):
def __init__(
self,
*,
sample_count: int,
shuffle: bool = False,
seed: int = 0,
start: Optional[int] = None,
step: Optional[int] = None,
advance: int = 0,
):
self._sample_count = sample_count
self._seed = seed
self._shuffle = shuffle
self._start = distributed.get_global_rank() if start is None else start
self._step = distributed.get_global_size() if step is None else step
self._advance = advance
def __iter__(self):
if self._shuffle:
iterator = self._shuffled_iterator()
else:
iterator = self._iterator()
yield from itertools.islice(iterator, self._advance, None)
def _iterator(self):
assert not self._shuffle
while True:
iterable = range(self._sample_count)
yield from itertools.islice(iterable, self._start, None, self._step)
def _shuffled_iterator(self):
assert self._shuffle
# Instantiate a generator here (rather than in the ctor) to keep the class
# picklable (requirement of mp.spawn)
generator = torch.Generator().manual_seed(self._seed)
while True:
iterable = _generate_randperm_indices(size=self._sample_count, generator=generator)
yield from itertools.islice(iterable, self._start, None, self._step)
# The following function is somewhat equivalent to _new_shuffle_tensor_slice below,
# but avoids a full in-place random permutation generation.
def _shuffle_tensor_slice(
*, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator
) -> np.ndarray:
stop = len(tensor)
count = stop // step
drop_count = stop - step * count
if drop_count:
warnings.warn(f"# of dropped samples: {drop_count}")
dtype = _get_numpy_dtype(stop)
result = np.empty(count, dtype=dtype)
for i in range(count):
j = torch.randint(0, i + 1, size=(1,), generator=generator).item() if i > 0 else 0
result[i] = result[j]
result[j] = tensor[start + i * step].item()
return result
def _new_shuffle_tensor_slice(
*, tensor: torch.Tensor, start: int = 0, step: int = 1, generator: torch.Generator
) -> np.ndarray:
stop = len(tensor)
count = stop // step
dtype = torch.int64 # Needed for using randperm result as indices
count = stop // step
drop_count = stop - step * count
if drop_count:
warnings.warn(f"# of dropped samples: {drop_count}")
indices = torch.randperm(count, dtype=dtype, generator=generator)
return tensor[start::step][indices].numpy()
def _make_seed(seed: int, start: int, iter_count: int) -> int:
# NOTE: Tried a few variants (including iter_count << 32), this one worked best.
return seed + start + (iter_count << 24)
class ShardedInfiniteSampler(Sampler):
def __init__(
self,
*,
sample_count: int,
shuffle: bool = False,
seed: int = 0,
start: Optional[int] = None,
step: Optional[int] = None,
advance: int = 0,
use_new_shuffle_tensor_slice: bool = False,
):
self._sample_count = sample_count
self._seed = seed
self._shuffle = shuffle
self._start = distributed.get_global_rank() if start is None else start
self._step = distributed.get_global_size() if step is None else step
self._advance = advance
self._iter_count = 0
self._shuffle_tensor_slice_fn = (
_new_shuffle_tensor_slice if use_new_shuffle_tensor_slice else _shuffle_tensor_slice
)
def __iter__(self):
iter_count = self._advance // self._sample_count
if iter_count > 0:
self._advance -= iter_count * self._sample_count
self._iter_count += iter_count
if self._shuffle:
iterator = self._shuffled_iterator()
else:
iterator = self._iterator()
yield from itertools.islice(iterator, self._advance, None)
def _iterator(self):
assert not self._shuffle
while True:
iterable = range(self._sample_count)
yield from itertools.islice(iterable, self._start, None, self._step)
def _shuffled_iterator(self):
assert self._shuffle
# Instantiate a generator here (rather than in the ctor) to be keep the class
# picklable (requirement of mp.spawn)
generator = torch.Generator()
# Always shuffle everything first
generator.manual_seed(self._seed)
dtype = _get_torch_dtype(self._sample_count)
perm = torch.randperm(self._sample_count, dtype=dtype, generator=generator)
while True:
# Re-seed on each iteration to allow skipping whole permutations
seed = _make_seed(self._seed, self._start, self._iter_count)
generator.manual_seed(seed)
iterable = self._shuffle_tensor_slice_fn(
tensor=perm, start=self._start, step=self._step, generator=generator
)
yield from iterable
self._iter_count += 1

View File

@@ -0,0 +1,92 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Sequence
import torch
from torchvision import transforms
class GaussianBlur(transforms.RandomApply):
"""
Apply Gaussian Blur to the PIL image.
"""
def __init__(self, *, p: float = 0.5, radius_min: float = 0.1, radius_max: float = 2.0):
# NOTE: torchvision is applying 1 - probability to return the original image
keep_p = 1 - p
transform = transforms.GaussianBlur(kernel_size=9, sigma=(radius_min, radius_max))
super().__init__(transforms=[transform], p=keep_p)
class MaybeToTensor(transforms.ToTensor):
"""
Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor, or keep as is if already a tensor.
"""
def __call__(self, pic):
"""
Args:
pic (PIL Image, numpy.ndarray or torch.tensor): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return super().__call__(pic)
# Use timm's names
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def make_normalize_transform(
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
) -> transforms.Normalize:
return transforms.Normalize(mean=mean, std=std)
# This roughly matches torchvision's preset for classification training:
# https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L6-L44
def make_classification_train_transform(
*,
crop_size: int = 224,
interpolation=transforms.InterpolationMode.BICUBIC,
hflip_prob: float = 0.5,
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
):
transforms_list = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)]
if hflip_prob > 0.0:
transforms_list.append(transforms.RandomHorizontalFlip(hflip_prob))
transforms_list.extend(
[
MaybeToTensor(),
make_normalize_transform(mean=mean, std=std),
]
)
return transforms.Compose(transforms_list)
# This matches (roughly) torchvision's preset for classification evaluation:
# https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L47-L69
def make_classification_eval_transform(
*,
resize_size: int = 256,
interpolation=transforms.InterpolationMode.BICUBIC,
crop_size: int = 224,
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
) -> transforms.Compose:
transforms_list = [
transforms.Resize(resize_size, interpolation=interpolation),
transforms.CenterCrop(crop_size),
MaybeToTensor(),
make_normalize_transform(mean=mean, std=std),
]
return transforms.Compose(transforms_list)

View File

@@ -0,0 +1,271 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import random
import re
import socket
from typing import Dict, List
import torch
import torch.distributed as dist
_LOCAL_RANK = -1
_LOCAL_WORLD_SIZE = -1
def is_enabled() -> bool:
"""
Returns:
True if distributed training is enabled
"""
return dist.is_available() and dist.is_initialized()
def get_global_size() -> int:
"""
Returns:
The number of processes in the process group
"""
return dist.get_world_size() if is_enabled() else 1
def get_global_rank() -> int:
"""
Returns:
The rank of the current process within the global process group.
"""
return dist.get_rank() if is_enabled() else 0
def get_local_rank() -> int:
"""
Returns:
The rank of the current process within the local (per-machine) process group.
"""
if not is_enabled():
return 0
assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE
return _LOCAL_RANK
def get_local_size() -> int:
"""
Returns:
The size of the per-machine process group,
i.e. the number of processes per machine.
"""
if not is_enabled():
return 1
assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE
return _LOCAL_WORLD_SIZE
def is_main_process() -> bool:
"""
Returns:
True if the current process is the main one.
"""
return get_global_rank() == 0
def _restrict_print_to_main_process() -> None:
"""
This function disables printing when not in the main process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_main_process() or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def _get_master_port(seed: int = 0) -> int:
MIN_MASTER_PORT, MAX_MASTER_PORT = (20_000, 60_000)
master_port_str = os.environ.get("MASTER_PORT")
if master_port_str is None:
rng = random.Random(seed)
return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT)
return int(master_port_str)
def _get_available_port() -> int:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
# A "" host address means INADDR_ANY i.e. binding to all interfaces.
# Note this is not compatible with IPv6.
s.bind(("", 0))
port = s.getsockname()[1]
return port
_TORCH_DISTRIBUTED_ENV_VARS = (
"MASTER_ADDR",
"MASTER_PORT",
"RANK",
"WORLD_SIZE",
"LOCAL_RANK",
"LOCAL_WORLD_SIZE",
)
def _collect_env_vars() -> Dict[str, str]:
return {env_var: os.environ[env_var] for env_var in _TORCH_DISTRIBUTED_ENV_VARS if env_var in os.environ}
def _is_slurm_job_process() -> bool:
return "SLURM_JOB_ID" in os.environ
def _parse_slurm_node_list(s: str) -> List[str]:
nodes = []
# Extract "hostname", "hostname[1-2,3,4-5]," substrings
p = re.compile(r"(([^\[]+)(?:\[([^\]]+)\])?),?")
for m in p.finditer(s):
prefix, suffixes = s[m.start(2) : m.end(2)], s[m.start(3) : m.end(3)]
for suffix in suffixes.split(","):
span = suffix.split("-")
if len(span) == 1:
nodes.append(prefix + suffix)
else:
width = len(span[0])
start, end = int(span[0]), int(span[1]) + 1
nodes.extend([prefix + f"{i:0{width}}" for i in range(start, end)])
return nodes
def _check_env_variable(key: str, new_value: str):
# Only check for difference with preset environment variables
if key in os.environ and os.environ[key] != new_value:
raise RuntimeError(f"Cannot export environment variables as {key} is already set")
class _TorchDistributedEnvironment:
def __init__(self):
self.master_addr = "127.0.0.1"
self.master_port = 0
self.rank = -1
self.world_size = -1
self.local_rank = -1
self.local_world_size = -1
if _is_slurm_job_process():
return self._set_from_slurm_env()
env_vars = _collect_env_vars()
if not env_vars:
# Environment is not set
pass
elif len(env_vars) == len(_TORCH_DISTRIBUTED_ENV_VARS):
# Environment is fully set
return self._set_from_preset_env()
else:
# Environment is partially set
collected_env_vars = ", ".join(env_vars.keys())
raise RuntimeError(f"Partially set environment: {collected_env_vars}")
if torch.cuda.device_count() > 0:
return self._set_from_local()
raise RuntimeError("Can't initialize PyTorch distributed environment")
# Slurm job created with sbatch, submitit, etc...
def _set_from_slurm_env(self):
# logger.info("Initialization from Slurm environment")
job_id = int(os.environ["SLURM_JOB_ID"])
node_count = int(os.environ["SLURM_JOB_NUM_NODES"])
nodes = _parse_slurm_node_list(os.environ["SLURM_JOB_NODELIST"])
assert len(nodes) == node_count
self.master_addr = nodes[0]
self.master_port = _get_master_port(seed=job_id)
self.rank = int(os.environ["SLURM_PROCID"])
self.world_size = int(os.environ["SLURM_NTASKS"])
assert self.rank < self.world_size
self.local_rank = int(os.environ["SLURM_LOCALID"])
self.local_world_size = self.world_size // node_count
assert self.local_rank < self.local_world_size
# Single node job with preset environment (i.e. torchrun)
def _set_from_preset_env(self):
# logger.info("Initialization from preset environment")
self.master_addr = os.environ["MASTER_ADDR"]
self.master_port = os.environ["MASTER_PORT"]
self.rank = int(os.environ["RANK"])
self.world_size = int(os.environ["WORLD_SIZE"])
assert self.rank < self.world_size
self.local_rank = int(os.environ["LOCAL_RANK"])
self.local_world_size = int(os.environ["LOCAL_WORLD_SIZE"])
assert self.local_rank < self.local_world_size
# Single node and GPU job (i.e. local script run)
def _set_from_local(self):
# logger.info("Initialization from local")
self.master_addr = "127.0.0.1"
self.master_port = _get_available_port()
self.rank = 0
self.world_size = 1
self.local_rank = 0
self.local_world_size = 1
def export(self, *, overwrite: bool) -> "_TorchDistributedEnvironment":
# See the "Environment variable initialization" section from
# https://pytorch.org/docs/stable/distributed.html for the complete list of
# environment variables required for the env:// initialization method.
env_vars = {
"MASTER_ADDR": self.master_addr,
"MASTER_PORT": str(self.master_port),
"RANK": str(self.rank),
"WORLD_SIZE": str(self.world_size),
"LOCAL_RANK": str(self.local_rank),
"LOCAL_WORLD_SIZE": str(self.local_world_size),
}
if not overwrite:
for k, v in env_vars.items():
_check_env_variable(k, v)
os.environ.update(env_vars)
return self
def enable(*, set_cuda_current_device: bool = True, overwrite: bool = False, allow_nccl_timeout: bool = False):
"""Enable distributed mode
Args:
set_cuda_current_device: If True, call torch.cuda.set_device() to set the
current PyTorch CUDA device to the one matching the local rank.
overwrite: If True, overwrites already set variables. Else fails.
"""
global _LOCAL_RANK, _LOCAL_WORLD_SIZE
if _LOCAL_RANK >= 0 or _LOCAL_WORLD_SIZE >= 0:
raise RuntimeError("Distributed mode has already been enabled")
torch_env = _TorchDistributedEnvironment()
torch_env.export(overwrite=overwrite)
if set_cuda_current_device:
torch.cuda.set_device(torch_env.local_rank)
if allow_nccl_timeout:
# This allows to use torch distributed timeout in a NCCL backend
key, value = "NCCL_ASYNC_ERROR_HANDLING", "1"
if not overwrite:
_check_env_variable(key, value)
os.environ[key] = value
dist.init_process_group(backend="nccl")
dist.barrier()
# Finalize setup
_LOCAL_RANK = torch_env.local_rank
_LOCAL_WORLD_SIZE = torch_env.local_world_size
_restrict_print_to_main_process()

View File

@@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

View File

@@ -0,0 +1,405 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from functools import partial
import json
import logging
import os
import sys
from typing import List, Optional
import torch
from torch.nn.functional import one_hot, softmax
import dinov2.distributed as distributed
from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data.transforms import make_classification_eval_transform
from dinov2.eval.metrics import AccuracyAveraging, build_topk_accuracy_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import ModelWithNormalize, evaluate, extract_features
logger = logging.getLogger("dinov2")
def get_args_parser(
description: Optional[str] = None,
parents: Optional[List[argparse.ArgumentParser]] = None,
add_help: bool = True,
):
parents = parents or []
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
parents = [setup_args_parser]
parser = argparse.ArgumentParser(
description=description,
parents=parents,
add_help=add_help,
)
parser.add_argument(
"--train-dataset",
dest="train_dataset_str",
type=str,
help="Training dataset",
)
parser.add_argument(
"--val-dataset",
dest="val_dataset_str",
type=str,
help="Validation dataset",
)
parser.add_argument(
"--nb_knn",
nargs="+",
type=int,
help="Number of NN to use. 20 is usually working the best.",
)
parser.add_argument(
"--temperature",
type=float,
help="Temperature used in the voting coefficient",
)
parser.add_argument(
"--gather-on-cpu",
action="store_true",
help="Whether to gather the train features on cpu, slower"
"but useful to avoid OOM for large datasets (e.g. ImageNet22k).",
)
parser.add_argument(
"--batch-size",
type=int,
help="Batch size.",
)
parser.add_argument(
"--n-per-class-list",
nargs="+",
type=int,
help="Number to take per class",
)
parser.add_argument(
"--n-tries",
type=int,
help="Number of tries",
)
parser.set_defaults(
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
nb_knn=[10, 20, 100, 200],
temperature=0.07,
batch_size=256,
n_per_class_list=[-1],
n_tries=1,
)
return parser
class KnnModule(torch.nn.Module):
"""
Gets knn of test features from all processes on a chunk of the train features
Each rank gets a chunk of the train features as well as a chunk of the test features.
In `compute_neighbors`, for each rank one after the other, its chunk of test features
is sent to all devices, partial knns are computed with each chunk of train features
then collated back on the original device.
"""
def __init__(self, train_features, train_labels, nb_knn, T, device, num_classes=1000):
super().__init__()
self.global_rank = distributed.get_global_rank()
self.global_size = distributed.get_global_size()
self.device = device
self.train_features_rank_T = train_features.chunk(self.global_size)[self.global_rank].T.to(self.device)
self.candidates = train_labels.chunk(self.global_size)[self.global_rank].view(1, -1).to(self.device)
self.nb_knn = nb_knn
self.max_k = max(self.nb_knn)
self.T = T
self.num_classes = num_classes
def _get_knn_sims_and_labels(self, similarity, train_labels):
topk_sims, indices = similarity.topk(self.max_k, largest=True, sorted=True)
neighbors_labels = torch.gather(train_labels, 1, indices)
return topk_sims, neighbors_labels
def _similarity_for_rank(self, features_rank, source_rank):
# Send the features from `source_rank` to all ranks
broadcast_shape = torch.tensor(features_rank.shape).to(self.device)
torch.distributed.broadcast(broadcast_shape, source_rank)
broadcasted = features_rank
if self.global_rank != source_rank:
broadcasted = torch.zeros(*broadcast_shape, dtype=features_rank.dtype, device=self.device)
torch.distributed.broadcast(broadcasted, source_rank)
# Compute the neighbors for `source_rank` among `train_features_rank_T`
similarity_rank = torch.mm(broadcasted, self.train_features_rank_T)
candidate_labels = self.candidates.expand(len(similarity_rank), -1)
return self._get_knn_sims_and_labels(similarity_rank, candidate_labels)
def _gather_all_knn_for_rank(self, topk_sims, neighbors_labels, target_rank):
# Gather all neighbors for `target_rank`
topk_sims_rank = retrieved_rank = None
if self.global_rank == target_rank:
topk_sims_rank = [torch.zeros_like(topk_sims) for _ in range(self.global_size)]
retrieved_rank = [torch.zeros_like(neighbors_labels) for _ in range(self.global_size)]
torch.distributed.gather(topk_sims, topk_sims_rank, dst=target_rank)
torch.distributed.gather(neighbors_labels, retrieved_rank, dst=target_rank)
if self.global_rank == target_rank:
# Perform a second top-k on the k * global_size retrieved neighbors
topk_sims_rank = torch.cat(topk_sims_rank, dim=1)
retrieved_rank = torch.cat(retrieved_rank, dim=1)
results = self._get_knn_sims_and_labels(topk_sims_rank, retrieved_rank)
return results
return None
def compute_neighbors(self, features_rank):
for rank in range(self.global_size):
topk_sims, neighbors_labels = self._similarity_for_rank(features_rank, rank)
results = self._gather_all_knn_for_rank(topk_sims, neighbors_labels, rank)
if results is not None:
topk_sims_rank, neighbors_labels_rank = results
return topk_sims_rank, neighbors_labels_rank
def forward(self, features_rank):
"""
Compute the results on all values of `self.nb_knn` neighbors from the full `self.max_k`
"""
assert all(k <= self.max_k for k in self.nb_knn)
topk_sims, neighbors_labels = self.compute_neighbors(features_rank)
batch_size = neighbors_labels.shape[0]
topk_sims_transform = softmax(topk_sims / self.T, 1)
matmul = torch.mul(
one_hot(neighbors_labels, num_classes=self.num_classes),
topk_sims_transform.view(batch_size, -1, 1),
)
probas_for_k = {k: torch.sum(matmul[:, :k, :], 1) for k in self.nb_knn}
return probas_for_k
class DictKeysModule(torch.nn.Module):
def __init__(self, keys):
super().__init__()
self.keys = keys
def forward(self, features_dict, targets):
for k in self.keys:
features_dict = features_dict[k]
return {"preds": features_dict, "target": targets}
def create_module_dict(*, module, n_per_class_list, n_tries, nb_knn, train_features, train_labels):
modules = {}
mapping = create_class_indices_mapping(train_labels)
for npc in n_per_class_list:
if npc < 0: # Only one try needed when using the full data
full_module = module(
train_features=train_features,
train_labels=train_labels,
nb_knn=nb_knn,
)
modules["full"] = ModuleDictWithForward({"1": full_module})
continue
all_tries = {}
for t in range(n_tries):
final_indices = filter_train(mapping, npc, seed=t)
k_list = list(set(nb_knn + [npc]))
k_list = sorted([el for el in k_list if el <= npc])
all_tries[str(t)] = module(
train_features=train_features[final_indices],
train_labels=train_labels[final_indices],
nb_knn=k_list,
)
modules[f"{npc} per class"] = ModuleDictWithForward(all_tries)
return ModuleDictWithForward(modules)
def filter_train(mapping, n_per_class, seed):
torch.manual_seed(seed)
final_indices = []
for k in mapping.keys():
index = torch.randperm(len(mapping[k]))[:n_per_class]
final_indices.append(mapping[k][index])
return torch.cat(final_indices).squeeze()
def create_class_indices_mapping(labels):
unique_labels, inverse = torch.unique(labels, return_inverse=True)
mapping = {unique_labels[i]: (inverse == i).nonzero() for i in range(len(unique_labels))}
return mapping
class ModuleDictWithForward(torch.nn.ModuleDict):
def forward(self, *args, **kwargs):
return {k: module(*args, **kwargs) for k, module in self._modules.items()}
def eval_knn(
model,
train_dataset,
val_dataset,
accuracy_averaging,
nb_knn,
temperature,
batch_size,
num_workers,
gather_on_cpu,
n_per_class_list=[-1],
n_tries=1,
):
model = ModelWithNormalize(model)
logger.info("Extracting features for train set...")
train_features, train_labels = extract_features(
model, train_dataset, batch_size, num_workers, gather_on_cpu=gather_on_cpu
)
logger.info(f"Train features created, shape {train_features.shape}.")
val_dataloader = make_data_loader(
dataset=val_dataset,
batch_size=batch_size,
num_workers=num_workers,
sampler_type=SamplerType.DISTRIBUTED,
drop_last=False,
shuffle=False,
persistent_workers=True,
)
num_classes = train_labels.max() + 1
metric_collection = build_topk_accuracy_metric(accuracy_averaging, num_classes=num_classes)
device = torch.cuda.current_device()
partial_module = partial(KnnModule, T=temperature, device=device, num_classes=num_classes)
knn_module_dict = create_module_dict(
module=partial_module,
n_per_class_list=n_per_class_list,
n_tries=n_tries,
nb_knn=nb_knn,
train_features=train_features,
train_labels=train_labels,
)
postprocessors, metrics = {}, {}
for n_per_class, knn_module in knn_module_dict.items():
for t, knn_try in knn_module.items():
postprocessors = {
**postprocessors,
**{(n_per_class, t, k): DictKeysModule([n_per_class, t, k]) for k in knn_try.nb_knn},
}
metrics = {**metrics, **{(n_per_class, t, k): metric_collection.clone() for k in knn_try.nb_knn}}
model_with_knn = torch.nn.Sequential(model, knn_module_dict)
# ============ evaluation ... ============
logger.info("Start the k-NN classification.")
_, results_dict = evaluate(model_with_knn, val_dataloader, postprocessors, metrics, device)
# Averaging the results over the n tries for each value of n_per_class
for n_per_class, knn_module in knn_module_dict.items():
first_try = list(knn_module.keys())[0]
k_list = knn_module[first_try].nb_knn
for k in k_list:
keys = results_dict[(n_per_class, first_try, k)].keys() # keys are e.g. `top-1` and `top-5`
results_dict[(n_per_class, k)] = {
key: torch.mean(torch.stack([results_dict[(n_per_class, t, k)][key] for t in knn_module.keys()]))
for key in keys
}
for t in knn_module.keys():
del results_dict[(n_per_class, t, k)]
return results_dict
def eval_knn_with_model(
model,
output_dir,
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
nb_knn=(10, 20, 100, 200),
temperature=0.07,
autocast_dtype=torch.float,
accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY,
transform=None,
gather_on_cpu=False,
batch_size=256,
num_workers=5,
n_per_class_list=[-1],
n_tries=1,
):
transform = transform or make_classification_eval_transform()
train_dataset = make_dataset(
dataset_str=train_dataset_str,
transform=transform,
)
val_dataset = make_dataset(
dataset_str=val_dataset_str,
transform=transform,
)
with torch.cuda.amp.autocast(dtype=autocast_dtype):
results_dict_knn = eval_knn(
model=model,
train_dataset=train_dataset,
val_dataset=val_dataset,
accuracy_averaging=accuracy_averaging,
nb_knn=nb_knn,
temperature=temperature,
batch_size=batch_size,
num_workers=num_workers,
gather_on_cpu=gather_on_cpu,
n_per_class_list=n_per_class_list,
n_tries=n_tries,
)
results_dict = {}
if distributed.is_main_process():
for knn_ in results_dict_knn.keys():
top1 = results_dict_knn[knn_]["top-1"].item() * 100.0
top5 = results_dict_knn[knn_]["top-5"].item() * 100.0
results_dict[f"{knn_} Top 1"] = top1
results_dict[f"{knn_} Top 5"] = top5
logger.info(f"{knn_} classifier result: Top1: {top1:.2f} Top5: {top5:.2f}")
metrics_file_path = os.path.join(output_dir, "results_eval_knn.json")
with open(metrics_file_path, "a") as f:
for k, v in results_dict.items():
f.write(json.dumps({k: v}) + "\n")
if distributed.is_enabled():
torch.distributed.barrier()
return results_dict
def main(args):
model, autocast_dtype = setup_and_build_model(args)
eval_knn_with_model(
model=model,
output_dir=args.output_dir,
train_dataset_str=args.train_dataset_str,
val_dataset_str=args.val_dataset_str,
nb_knn=args.nb_knn,
temperature=args.temperature,
autocast_dtype=autocast_dtype,
accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY,
transform=None,
gather_on_cpu=args.gather_on_cpu,
batch_size=args.batch_size,
num_workers=5,
n_per_class_list=args.n_per_class_list,
n_tries=args.n_tries,
)
return 0
if __name__ == "__main__":
description = "DINOv2 k-NN evaluation"
args_parser = get_args_parser(description=description)
args = args_parser.parse_args()
sys.exit(main(args))

View File

@@ -0,0 +1,626 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from functools import partial
import json
import logging
import os
import sys
from typing import List, Optional
import numpy as np
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer
from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data.transforms import make_classification_eval_transform, make_classification_train_transform
import dinov2.distributed as distributed
from dinov2.eval.metrics import MetricType, build_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import ModelWithIntermediateLayers, evaluate
from dinov2.logging import MetricLogger
logger = logging.getLogger("dinov2")
def get_args_parser(
description: Optional[str] = None,
parents: Optional[List[argparse.ArgumentParser]] = None,
add_help: bool = True,
):
parents = parents or []
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
parents = [setup_args_parser]
parser = argparse.ArgumentParser(
description=description,
parents=parents,
add_help=add_help,
)
parser.add_argument(
"--train-dataset",
dest="train_dataset_str",
type=str,
help="Training dataset",
)
parser.add_argument(
"--val-dataset",
dest="val_dataset_str",
type=str,
help="Validation dataset",
)
parser.add_argument(
"--test-datasets",
dest="test_dataset_strs",
type=str,
nargs="+",
help="Test datasets, none to reuse the validation dataset",
)
parser.add_argument(
"--epochs",
type=int,
help="Number of training epochs",
)
parser.add_argument(
"--batch-size",
type=int,
help="Batch Size (per GPU)",
)
parser.add_argument(
"--num-workers",
type=int,
help="Number de Workers",
)
parser.add_argument(
"--epoch-length",
type=int,
help="Length of an epoch in number of iterations",
)
parser.add_argument(
"--save-checkpoint-frequency",
type=int,
help="Number of epochs between two named checkpoint saves.",
)
parser.add_argument(
"--eval-period-iterations",
type=int,
help="Number of iterations between two evaluations.",
)
parser.add_argument(
"--learning-rates",
nargs="+",
type=float,
help="Learning rates to grid search.",
)
parser.add_argument(
"--no-resume",
action="store_true",
help="Whether to not resume from existing checkpoints",
)
parser.add_argument(
"--val-metric-type",
type=MetricType,
choices=list(MetricType),
help="Validation metric",
)
parser.add_argument(
"--test-metric-types",
type=MetricType,
choices=list(MetricType),
nargs="+",
help="Evaluation metric",
)
parser.add_argument(
"--classifier-fpath",
type=str,
help="Path to a file containing pretrained linear classifiers",
)
parser.add_argument(
"--val-class-mapping-fpath",
type=str,
help="Path to a file containing a mapping to adjust classifier outputs",
)
parser.add_argument(
"--test-class-mapping-fpaths",
nargs="+",
type=str,
help="Path to a file containing a mapping to adjust classifier outputs",
)
parser.set_defaults(
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
test_dataset_strs=None,
epochs=10,
batch_size=128,
num_workers=8,
epoch_length=1250,
save_checkpoint_frequency=20,
eval_period_iterations=1250,
learning_rates=[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 0.1],
val_metric_type=MetricType.MEAN_ACCURACY,
test_metric_types=None,
classifier_fpath=None,
val_class_mapping_fpath=None,
test_class_mapping_fpaths=[None],
)
return parser
def has_ddp_wrapper(m: nn.Module) -> bool:
return isinstance(m, DistributedDataParallel)
def remove_ddp_wrapper(m: nn.Module) -> nn.Module:
return m.module if has_ddp_wrapper(m) else m
def _pad_and_collate(batch):
maxlen = max(len(targets) for image, targets in batch)
padded_batch = [
(image, np.pad(targets, (0, maxlen - len(targets)), constant_values=-1)) for image, targets in batch
]
return torch.utils.data.default_collate(padded_batch)
def create_linear_input(x_tokens_list, use_n_blocks, use_avgpool):
intermediate_output = x_tokens_list[-use_n_blocks:]
output = torch.cat([class_token for _, class_token in intermediate_output], dim=-1)
if use_avgpool:
output = torch.cat(
(
output,
torch.mean(intermediate_output[-1][0], dim=1), # patch tokens
),
dim=-1,
)
output = output.reshape(output.shape[0], -1)
return output.float()
class LinearClassifier(nn.Module):
"""Linear layer to train on top of frozen features"""
def __init__(self, out_dim, use_n_blocks, use_avgpool, num_classes=1000):
super().__init__()
self.out_dim = out_dim
self.use_n_blocks = use_n_blocks
self.use_avgpool = use_avgpool
self.num_classes = num_classes
self.linear = nn.Linear(out_dim, num_classes)
self.linear.weight.data.normal_(mean=0.0, std=0.01)
self.linear.bias.data.zero_()
def forward(self, x_tokens_list):
output = create_linear_input(x_tokens_list, self.use_n_blocks, self.use_avgpool)
return self.linear(output)
class AllClassifiers(nn.Module):
def __init__(self, classifiers_dict):
super().__init__()
self.classifiers_dict = nn.ModuleDict()
self.classifiers_dict.update(classifiers_dict)
def forward(self, inputs):
return {k: v.forward(inputs) for k, v in self.classifiers_dict.items()}
def __len__(self):
return len(self.classifiers_dict)
class LinearPostprocessor(nn.Module):
def __init__(self, linear_classifier, class_mapping=None):
super().__init__()
self.linear_classifier = linear_classifier
self.register_buffer("class_mapping", None if class_mapping is None else torch.LongTensor(class_mapping))
def forward(self, samples, targets):
preds = self.linear_classifier(samples)
return {
"preds": preds[:, self.class_mapping] if self.class_mapping is not None else preds,
"target": targets,
}
def scale_lr(learning_rates, batch_size):
return learning_rates * (batch_size * distributed.get_global_size()) / 256.0
def setup_linear_classifiers(sample_output, n_last_blocks_list, learning_rates, batch_size, num_classes=1000):
linear_classifiers_dict = nn.ModuleDict()
optim_param_groups = []
for n in n_last_blocks_list:
for avgpool in [False, True]:
for _lr in learning_rates:
lr = scale_lr(_lr, batch_size)
out_dim = create_linear_input(sample_output, use_n_blocks=n, use_avgpool=avgpool).shape[1]
linear_classifier = LinearClassifier(
out_dim, use_n_blocks=n, use_avgpool=avgpool, num_classes=num_classes
)
linear_classifier = linear_classifier.cuda()
linear_classifiers_dict[
f"classifier_{n}_blocks_avgpool_{avgpool}_lr_{lr:.5f}".replace(".", "_")
] = linear_classifier
optim_param_groups.append({"params": linear_classifier.parameters(), "lr": lr})
linear_classifiers = AllClassifiers(linear_classifiers_dict)
if distributed.is_enabled():
linear_classifiers = nn.parallel.DistributedDataParallel(linear_classifiers)
return linear_classifiers, optim_param_groups
@torch.no_grad()
def evaluate_linear_classifiers(
feature_model,
linear_classifiers,
data_loader,
metric_type,
metrics_file_path,
training_num_classes,
iteration,
prefixstring="",
class_mapping=None,
best_classifier_on_val=None,
):
logger.info("running validation !")
num_classes = len(class_mapping) if class_mapping is not None else training_num_classes
metric = build_metric(metric_type, num_classes=num_classes)
postprocessors = {k: LinearPostprocessor(v, class_mapping) for k, v in linear_classifiers.classifiers_dict.items()}
metrics = {k: metric.clone() for k in linear_classifiers.classifiers_dict}
_, results_dict_temp = evaluate(
feature_model,
data_loader,
postprocessors,
metrics,
torch.cuda.current_device(),
)
logger.info("")
results_dict = {}
max_accuracy = 0
best_classifier = ""
for i, (classifier_string, metric) in enumerate(results_dict_temp.items()):
logger.info(f"{prefixstring} -- Classifier: {classifier_string} * {metric}")
if (
best_classifier_on_val is None and metric["top-1"].item() > max_accuracy
) or classifier_string == best_classifier_on_val:
max_accuracy = metric["top-1"].item()
best_classifier = classifier_string
results_dict["best_classifier"] = {"name": best_classifier, "accuracy": max_accuracy}
logger.info(f"best classifier: {results_dict['best_classifier']}")
if distributed.is_main_process():
with open(metrics_file_path, "a") as f:
f.write(f"iter: {iteration}\n")
for k, v in results_dict.items():
f.write(json.dumps({k: v}) + "\n")
f.write("\n")
return results_dict
def eval_linear(
*,
feature_model,
linear_classifiers,
train_data_loader,
val_data_loader,
metrics_file_path,
optimizer,
scheduler,
output_dir,
max_iter,
checkpoint_period, # In number of iter, creates a new file every period
running_checkpoint_period, # Period to update main checkpoint file
eval_period,
metric_type,
training_num_classes,
resume=True,
classifier_fpath=None,
val_class_mapping=None,
):
checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler)
start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1
periodic_checkpointer = PeriodicCheckpointer(checkpointer, checkpoint_period, max_iter=max_iter)
iteration = start_iter
logger.info("Starting training from iteration {}".format(start_iter))
metric_logger = MetricLogger(delimiter=" ")
header = "Training"
for data, labels in metric_logger.log_every(
train_data_loader,
10,
header,
max_iter,
start_iter,
):
data = data.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
features = feature_model(data)
outputs = linear_classifiers(features)
losses = {f"loss_{k}": nn.CrossEntropyLoss()(v, labels) for k, v in outputs.items()}
loss = sum(losses.values())
# compute the gradients
optimizer.zero_grad()
loss.backward()
# step
optimizer.step()
scheduler.step()
# log
if iteration % 10 == 0:
torch.cuda.synchronize()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
print("lr", optimizer.param_groups[0]["lr"])
if iteration - start_iter > 5:
if iteration % running_checkpoint_period == 0:
torch.cuda.synchronize()
if distributed.is_main_process():
logger.info("Checkpointing running_checkpoint")
periodic_checkpointer.save("running_checkpoint_linear_eval", iteration=iteration)
torch.cuda.synchronize()
periodic_checkpointer.step(iteration)
if eval_period > 0 and (iteration + 1) % eval_period == 0 and iteration != max_iter - 1:
_ = evaluate_linear_classifiers(
feature_model=feature_model,
linear_classifiers=remove_ddp_wrapper(linear_classifiers),
data_loader=val_data_loader,
metrics_file_path=metrics_file_path,
prefixstring=f"ITER: {iteration}",
metric_type=metric_type,
training_num_classes=training_num_classes,
iteration=iteration,
class_mapping=val_class_mapping,
)
torch.cuda.synchronize()
iteration = iteration + 1
val_results_dict = evaluate_linear_classifiers(
feature_model=feature_model,
linear_classifiers=remove_ddp_wrapper(linear_classifiers),
data_loader=val_data_loader,
metrics_file_path=metrics_file_path,
metric_type=metric_type,
training_num_classes=training_num_classes,
iteration=iteration,
class_mapping=val_class_mapping,
)
return val_results_dict, feature_model, linear_classifiers, iteration
def make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type):
test_dataset = make_dataset(
dataset_str=test_dataset_str,
transform=make_classification_eval_transform(),
)
test_data_loader = make_data_loader(
dataset=test_dataset,
batch_size=batch_size,
num_workers=num_workers,
sampler_type=SamplerType.DISTRIBUTED,
drop_last=False,
shuffle=False,
persistent_workers=False,
collate_fn=_pad_and_collate if metric_type == MetricType.IMAGENET_REAL_ACCURACY else None,
)
return test_data_loader
def test_on_datasets(
feature_model,
linear_classifiers,
test_dataset_strs,
batch_size,
num_workers,
test_metric_types,
metrics_file_path,
training_num_classes,
iteration,
best_classifier_on_val,
prefixstring="",
test_class_mappings=[None],
):
results_dict = {}
for test_dataset_str, class_mapping, metric_type in zip(test_dataset_strs, test_class_mappings, test_metric_types):
logger.info(f"Testing on {test_dataset_str}")
test_data_loader = make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type)
dataset_results_dict = evaluate_linear_classifiers(
feature_model,
remove_ddp_wrapper(linear_classifiers),
test_data_loader,
metric_type,
metrics_file_path,
training_num_classes,
iteration,
prefixstring="",
class_mapping=class_mapping,
best_classifier_on_val=best_classifier_on_val,
)
results_dict[f"{test_dataset_str}_accuracy"] = 100.0 * dataset_results_dict["best_classifier"]["accuracy"]
return results_dict
def run_eval_linear(
model,
output_dir,
train_dataset_str,
val_dataset_str,
batch_size,
epochs,
epoch_length,
num_workers,
save_checkpoint_frequency,
eval_period_iterations,
learning_rates,
autocast_dtype,
test_dataset_strs=None,
resume=True,
classifier_fpath=None,
val_class_mapping_fpath=None,
test_class_mapping_fpaths=[None],
val_metric_type=MetricType.MEAN_ACCURACY,
test_metric_types=None,
):
seed = 0
if test_dataset_strs is None:
test_dataset_strs = [val_dataset_str]
if test_metric_types is None:
test_metric_types = [val_metric_type] * len(test_dataset_strs)
else:
assert len(test_metric_types) == len(test_dataset_strs)
assert len(test_dataset_strs) == len(test_class_mapping_fpaths)
train_transform = make_classification_train_transform()
train_dataset = make_dataset(
dataset_str=train_dataset_str,
transform=train_transform,
)
training_num_classes = len(torch.unique(torch.Tensor(train_dataset.get_targets().astype(int))))
sampler_type = SamplerType.SHARDED_INFINITE
# sampler_type = SamplerType.INFINITE
n_last_blocks_list = [1, 4]
n_last_blocks = max(n_last_blocks_list)
autocast_ctx = partial(torch.cuda.amp.autocast, enabled=True, dtype=autocast_dtype)
feature_model = ModelWithIntermediateLayers(model, n_last_blocks, autocast_ctx)
sample_output = feature_model(train_dataset[0][0].unsqueeze(0).cuda())
linear_classifiers, optim_param_groups = setup_linear_classifiers(
sample_output,
n_last_blocks_list,
learning_rates,
batch_size,
training_num_classes,
)
optimizer = torch.optim.SGD(optim_param_groups, momentum=0.9, weight_decay=0)
max_iter = epochs * epoch_length
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, max_iter, eta_min=0)
checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler)
start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1
train_data_loader = make_data_loader(
dataset=train_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True,
seed=seed,
sampler_type=sampler_type,
sampler_advance=start_iter,
drop_last=True,
persistent_workers=True,
)
val_data_loader = make_eval_data_loader(val_dataset_str, batch_size, num_workers, val_metric_type)
checkpoint_period = save_checkpoint_frequency * epoch_length
if val_class_mapping_fpath is not None:
logger.info(f"Using class mapping from {val_class_mapping_fpath}")
val_class_mapping = np.load(val_class_mapping_fpath)
else:
val_class_mapping = None
test_class_mappings = []
for class_mapping_fpath in test_class_mapping_fpaths:
if class_mapping_fpath is not None and class_mapping_fpath != "None":
logger.info(f"Using class mapping from {class_mapping_fpath}")
class_mapping = np.load(class_mapping_fpath)
else:
class_mapping = None
test_class_mappings.append(class_mapping)
metrics_file_path = os.path.join(output_dir, "results_eval_linear.json")
val_results_dict, feature_model, linear_classifiers, iteration = eval_linear(
feature_model=feature_model,
linear_classifiers=linear_classifiers,
train_data_loader=train_data_loader,
val_data_loader=val_data_loader,
metrics_file_path=metrics_file_path,
optimizer=optimizer,
scheduler=scheduler,
output_dir=output_dir,
max_iter=max_iter,
checkpoint_period=checkpoint_period,
running_checkpoint_period=epoch_length,
eval_period=eval_period_iterations,
metric_type=val_metric_type,
training_num_classes=training_num_classes,
resume=resume,
val_class_mapping=val_class_mapping,
classifier_fpath=classifier_fpath,
)
results_dict = {}
if len(test_dataset_strs) > 1 or test_dataset_strs[0] != val_dataset_str:
results_dict = test_on_datasets(
feature_model,
linear_classifiers,
test_dataset_strs,
batch_size,
0, # num_workers,
test_metric_types,
metrics_file_path,
training_num_classes,
iteration,
val_results_dict["best_classifier"]["name"],
prefixstring="",
test_class_mappings=test_class_mappings,
)
results_dict["best_classifier"] = val_results_dict["best_classifier"]["name"]
results_dict[f"{val_dataset_str}_accuracy"] = 100.0 * val_results_dict["best_classifier"]["accuracy"]
logger.info("Test Results Dict " + str(results_dict))
return results_dict
def main(args):
model, autocast_dtype = setup_and_build_model(args)
run_eval_linear(
model=model,
output_dir=args.output_dir,
train_dataset_str=args.train_dataset_str,
val_dataset_str=args.val_dataset_str,
test_dataset_strs=args.test_dataset_strs,
batch_size=args.batch_size,
epochs=args.epochs,
epoch_length=args.epoch_length,
num_workers=args.num_workers,
save_checkpoint_frequency=args.save_checkpoint_frequency,
eval_period_iterations=args.eval_period_iterations,
learning_rates=args.learning_rates,
autocast_dtype=autocast_dtype,
resume=not args.no_resume,
classifier_fpath=args.classifier_fpath,
val_metric_type=args.val_metric_type,
test_metric_types=args.test_metric_types,
val_class_mapping_fpath=args.val_class_mapping_fpath,
test_class_mapping_fpaths=args.test_class_mapping_fpaths,
)
return 0
if __name__ == "__main__":
description = "DINOv2 linear evaluation"
args_parser = get_args_parser(description=description)
args = args_parser.parse_args()
sys.exit(main(args))

View File

@@ -0,0 +1,445 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import gc
import logging
import sys
import time
from typing import List, Optional
from cuml.linear_model import LogisticRegression
import torch
import torch.backends.cudnn as cudnn
import torch.distributed
from torch import nn
from torch.utils.data import TensorDataset
from torchmetrics import MetricTracker
from dinov2.data import make_dataset
from dinov2.data.transforms import make_classification_eval_transform
from dinov2.distributed import get_global_rank, get_global_size
from dinov2.eval.metrics import MetricType, build_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import evaluate, extract_features
from dinov2.utils.dtype import as_torch_dtype
logger = logging.getLogger("dinov2")
DEFAULT_MAX_ITER = 1_000
C_POWER_RANGE = torch.linspace(-6, 5, 45)
_CPU_DEVICE = torch.device("cpu")
def get_args_parser(
description: Optional[str] = None,
parents: Optional[List[argparse.ArgumentParser]] = None,
add_help: bool = True,
):
parents = parents or []
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
parents = [setup_args_parser]
parser = argparse.ArgumentParser(
description=description,
parents=parents,
add_help=add_help,
)
parser.add_argument(
"--train-dataset",
dest="train_dataset_str",
type=str,
help="Training dataset",
)
parser.add_argument(
"--val-dataset",
dest="val_dataset_str",
type=str,
help="Validation dataset",
)
parser.add_argument(
"--finetune-dataset-str",
dest="finetune_dataset_str",
type=str,
help="Fine-tuning dataset",
)
parser.add_argument(
"--finetune-on-val",
action="store_true",
help="If there is no finetune dataset, whether to choose the "
"hyperparameters on the val set instead of 10%% of the train dataset",
)
parser.add_argument(
"--metric-type",
type=MetricType,
choices=list(MetricType),
help="Metric type",
)
parser.add_argument(
"--train-features-device",
type=str,
help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s",
)
parser.add_argument(
"--train-dtype",
type=str,
help="Data type to convert the train features to (default: %(default)s)",
)
parser.add_argument(
"--max-train-iters",
type=int,
help="Maximum number of train iterations (default: %(default)s)",
)
parser.set_defaults(
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
finetune_dataset_str=None,
metric_type=MetricType.MEAN_ACCURACY,
train_features_device="cpu",
train_dtype="float64",
max_train_iters=DEFAULT_MAX_ITER,
finetune_on_val=False,
)
return parser
class LogRegModule(nn.Module):
def __init__(
self,
C,
max_iter=DEFAULT_MAX_ITER,
dtype=torch.float64,
device=_CPU_DEVICE,
):
super().__init__()
self.dtype = dtype
self.device = device
self.estimator = LogisticRegression(
penalty="l2",
C=C,
max_iter=max_iter,
output_type="numpy",
tol=1e-12,
linesearch_max_iter=50,
)
def forward(self, samples, targets):
samples_device = samples.device
samples = samples.to(dtype=self.dtype, device=self.device)
if self.device == _CPU_DEVICE:
samples = samples.numpy()
probas = self.estimator.predict_proba(samples)
return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets}
def fit(self, train_features, train_labels):
train_features = train_features.to(dtype=self.dtype, device=self.device)
train_labels = train_labels.to(dtype=self.dtype, device=self.device)
if self.device == _CPU_DEVICE:
# both cuML and sklearn only work with numpy arrays on CPU
train_features = train_features.numpy()
train_labels = train_labels.numpy()
self.estimator.fit(train_features, train_labels)
def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device):
postprocessors = {"metrics": logreg_model}
metrics = {"metrics": logreg_metric}
return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device)
def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE):
logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device)
logreg_model.fit(train_features, train_labels)
return logreg_model
def train_and_evaluate(
*,
C,
max_iter,
train_features,
train_labels,
logreg_metric,
test_data_loader,
train_dtype=torch.float64,
train_features_device,
eval_device,
):
logreg_model = train_for_C(
C=C,
max_iter=max_iter,
train_features=train_features,
train_labels=train_labels,
dtype=train_dtype,
device=train_features_device,
)
return evaluate_model(
logreg_model=logreg_model,
logreg_metric=logreg_metric,
test_data_loader=test_data_loader,
device=eval_device,
)
def sweep_C_values(
*,
train_features,
train_labels,
test_data_loader,
metric_type,
num_classes,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
if metric_type == MetricType.PER_CLASS_ACCURACY:
# If we want to output per-class accuracy, we select the hyperparameters with mean per class
metric_type = MetricType.MEAN_PER_CLASS_ACCURACY
logreg_metric = build_metric(metric_type, num_classes=num_classes)
metric_tracker = MetricTracker(logreg_metric, maximize=True)
ALL_C = 10**C_POWER_RANGE
logreg_models = {}
train_features = train_features.to(dtype=train_dtype, device=train_features_device)
train_labels = train_labels.to(device=train_features_device)
for i in range(get_global_rank(), len(ALL_C), get_global_size()):
C = ALL_C[i].item()
logger.info(
f"Training for C = {C:.5f}, dtype={train_dtype}, "
f"features: {train_features.shape}, {train_features.dtype}, "
f"labels: {train_labels.shape}, {train_labels.dtype}"
)
logreg_models[C] = train_for_C(
C=C,
max_iter=max_train_iters,
train_features=train_features,
train_labels=train_labels,
dtype=train_dtype,
device=train_features_device,
)
gather_list = [None for _ in range(get_global_size())]
torch.distributed.all_gather_object(gather_list, logreg_models)
logreg_models_gathered = {}
for logreg_dict in gather_list:
logreg_models_gathered.update(logreg_dict)
for i in range(len(ALL_C)):
metric_tracker.increment()
C = ALL_C[i].item()
evals = evaluate_model(
logreg_model=logreg_models_gathered[C],
logreg_metric=metric_tracker,
test_data_loader=test_data_loader,
device=torch.cuda.current_device(),
)
logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}")
best_stats, which_epoch = metric_tracker.best_metric(return_step=True)
best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()}
if which_epoch["top-1"] == i:
best_C = C
logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}")
return best_stats, best_C
def eval_log_regression(
*,
model,
train_dataset,
val_dataset,
finetune_dataset,
metric_type,
batch_size,
num_workers,
finetune_on_val=False,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
"""
Implements the "standard" process for log regression evaluation:
The value of C is chosen by training on train_dataset and evaluating on
finetune_dataset. Then, the final model is trained on a concatenation of
train_dataset and finetune_dataset, and is evaluated on val_dataset.
If there is no finetune_dataset, the value of C is the one that yields
the best results on a random 10% subset of the train dataset
"""
start = time.time()
train_features, train_labels = extract_features(
model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
val_features, val_labels = extract_features(
model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
val_data_loader = torch.utils.data.DataLoader(
TensorDataset(val_features, val_labels),
batch_size=batch_size,
drop_last=False,
num_workers=0,
persistent_workers=False,
)
if finetune_dataset is None and finetune_on_val:
logger.info("Choosing hyperparameters on the val dataset")
finetune_features, finetune_labels = val_features, val_labels
elif finetune_dataset is None and not finetune_on_val:
logger.info("Choosing hyperparameters on 10% of the train dataset")
torch.manual_seed(0)
indices = torch.randperm(len(train_features), device=train_features.device)
finetune_index = indices[: len(train_features) // 10]
train_index = indices[len(train_features) // 10 :]
finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index]
train_features, train_labels = train_features[train_index], train_labels[train_index]
else:
logger.info("Choosing hyperparameters on the finetune dataset")
finetune_features, finetune_labels = extract_features(
model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
# release the model - free GPU memory
del model
gc.collect()
torch.cuda.empty_cache()
finetune_data_loader = torch.utils.data.DataLoader(
TensorDataset(finetune_features, finetune_labels),
batch_size=batch_size,
drop_last=False,
)
if len(train_labels.shape) > 1:
num_classes = train_labels.shape[1]
else:
num_classes = train_labels.max() + 1
logger.info("Using cuML for logistic regression")
best_stats, best_C = sweep_C_values(
train_features=train_features,
train_labels=train_labels,
test_data_loader=finetune_data_loader,
metric_type=metric_type,
num_classes=num_classes,
train_dtype=train_dtype,
train_features_device=train_features_device,
max_train_iters=max_train_iters,
)
if not finetune_on_val:
logger.info("Best parameter found, concatenating features")
train_features = torch.cat((train_features, finetune_features))
train_labels = torch.cat((train_labels, finetune_labels))
logger.info("Training final model")
logreg_metric = build_metric(metric_type, num_classes=num_classes)
evals = train_and_evaluate(
C=best_C,
max_iter=max_train_iters,
train_features=train_features,
train_labels=train_labels,
logreg_metric=logreg_metric.clone(),
test_data_loader=val_data_loader,
eval_device=torch.cuda.current_device(),
train_dtype=train_dtype,
train_features_device=train_features_device,
)
best_stats = evals[1]["metrics"]
best_stats["best_C"] = best_C
logger.info(f"Log regression evaluation done in {int(time.time() - start)}s")
return best_stats
def eval_log_regression_with_model(
model,
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
finetune_dataset_str=None,
autocast_dtype=torch.float,
finetune_on_val=False,
metric_type=MetricType.MEAN_ACCURACY,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
cudnn.benchmark = True
transform = make_classification_eval_transform(resize_size=224)
target_transform = None
train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform)
val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform)
if finetune_dataset_str is not None:
finetune_dataset = make_dataset(
dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform
)
else:
finetune_dataset = None
with torch.cuda.amp.autocast(dtype=autocast_dtype):
results_dict_logreg = eval_log_regression(
model=model,
train_dataset=train_dataset,
val_dataset=val_dataset,
finetune_dataset=finetune_dataset,
metric_type=metric_type,
batch_size=256,
num_workers=0, # 5,
finetune_on_val=finetune_on_val,
train_dtype=train_dtype,
train_features_device=train_features_device,
max_train_iters=max_train_iters,
)
results_dict = {
"top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0,
"top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0,
"best_C": results_dict_logreg["best_C"],
}
logger.info(
"\n".join(
[
"Training of the supervised logistic regression on frozen features completed.\n"
"Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]),
"Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]),
"obtained for C = {c:.6f}".format(c=results_dict["best_C"]),
]
)
)
torch.distributed.barrier()
return results_dict
def main(args):
model, autocast_dtype = setup_and_build_model(args)
eval_log_regression_with_model(
model=model,
train_dataset_str=args.train_dataset_str,
val_dataset_str=args.val_dataset_str,
finetune_dataset_str=args.finetune_dataset_str,
autocast_dtype=autocast_dtype,
finetune_on_val=args.finetune_on_val,
metric_type=args.metric_type,
train_dtype=as_torch_dtype(args.train_dtype),
train_features_device=torch.device(args.train_features_device),
max_train_iters=args.max_train_iters,
)
return 0
if __name__ == "__main__":
description = "DINOv2 logistic regression evaluation"
args_parser = get_args_parser(description=description)
args = args_parser.parse_args()
sys.exit(main(args))

View File

@@ -0,0 +1,114 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from enum import Enum
import logging
from typing import Any, Dict, Optional
import torch
from torch import Tensor
from torchmetrics import Metric, MetricCollection
from torchmetrics.classification import MulticlassAccuracy
from torchmetrics.utilities.data import dim_zero_cat, select_topk
logger = logging.getLogger("dinov2")
class MetricType(Enum):
MEAN_ACCURACY = "mean_accuracy"
MEAN_PER_CLASS_ACCURACY = "mean_per_class_accuracy"
PER_CLASS_ACCURACY = "per_class_accuracy"
IMAGENET_REAL_ACCURACY = "imagenet_real_accuracy"
@property
def accuracy_averaging(self):
return getattr(AccuracyAveraging, self.name, None)
def __str__(self):
return self.value
class AccuracyAveraging(Enum):
MEAN_ACCURACY = "micro"
MEAN_PER_CLASS_ACCURACY = "macro"
PER_CLASS_ACCURACY = "none"
def __str__(self):
return self.value
def build_metric(metric_type: MetricType, *, num_classes: int, ks: Optional[tuple] = None):
if metric_type.accuracy_averaging is not None:
return build_topk_accuracy_metric(
average_type=metric_type.accuracy_averaging,
num_classes=num_classes,
ks=(1, 5) if ks is None else ks,
)
elif metric_type == MetricType.IMAGENET_REAL_ACCURACY:
return build_topk_imagenet_real_accuracy_metric(
num_classes=num_classes,
ks=(1, 5) if ks is None else ks,
)
raise ValueError(f"Unknown metric type {metric_type}")
def build_topk_accuracy_metric(average_type: AccuracyAveraging, num_classes: int, ks: tuple = (1, 5)):
metrics: Dict[str, Metric] = {
f"top-{k}": MulticlassAccuracy(top_k=k, num_classes=int(num_classes), average=average_type.value) for k in ks
}
return MetricCollection(metrics)
def build_topk_imagenet_real_accuracy_metric(num_classes: int, ks: tuple = (1, 5)):
metrics: Dict[str, Metric] = {f"top-{k}": ImageNetReaLAccuracy(top_k=k, num_classes=int(num_classes)) for k in ks}
return MetricCollection(metrics)
class ImageNetReaLAccuracy(Metric):
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
def __init__(
self,
num_classes: int,
top_k: int = 1,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.num_classes = num_classes
self.top_k = top_k
self.add_state("tp", [], dist_reduce_fx="cat")
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
# preds [B, D]
# target [B, A]
# preds_oh [B, D] with 0 and 1
# select top K highest probabilities, use one hot representation
preds_oh = select_topk(preds, self.top_k)
# target_oh [B, D + 1] with 0 and 1
target_oh = torch.zeros((preds_oh.shape[0], preds_oh.shape[1] + 1), device=target.device, dtype=torch.int32)
target = target.long()
# for undefined targets (-1) use a fake value `num_classes`
target[target == -1] = self.num_classes
# fill targets, use one hot representation
target_oh.scatter_(1, target, 1)
# target_oh [B, D] (remove the fake target at index `num_classes`)
target_oh = target_oh[:, :-1]
# tp [B] with 0 and 1
tp = (preds_oh * target_oh == 1).sum(dim=1)
# at least one match between prediction and target
tp.clip_(max=1)
# ignore instances where no targets are defined
mask = target_oh.sum(dim=1) > 0
tp = tp[mask]
self.tp.append(tp) # type: ignore
def compute(self) -> Tensor:
tp = dim_zero_cat(self.tp) # type: ignore
return tp.float().mean()

View File

@@ -0,0 +1,76 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from typing import Any, List, Optional, Tuple
import torch
import torch.backends.cudnn as cudnn
from dinov2.models import build_model_from_cfg
from dinov2.utils.config import setup
import dinov2.utils.utils as dinov2_utils
def get_args_parser(
description: Optional[str] = None,
parents: Optional[List[argparse.ArgumentParser]] = None,
add_help: bool = True,
):
parser = argparse.ArgumentParser(
description=description,
parents=parents or [],
add_help=add_help,
)
parser.add_argument(
"--config-file",
type=str,
help="Model configuration file",
)
parser.add_argument(
"--pretrained-weights",
type=str,
help="Pretrained model weights",
)
parser.add_argument(
"--output-dir",
default="",
type=str,
help="Output directory to write results and logs",
)
parser.add_argument(
"--opts",
help="Extra configuration options",
default=[],
nargs="+",
)
return parser
def get_autocast_dtype(config):
teacher_dtype_str = config.compute_precision.teacher.backbone.mixed_precision.param_dtype
if teacher_dtype_str == "fp16":
return torch.half
elif teacher_dtype_str == "bf16":
return torch.bfloat16
else:
return torch.float
def build_model_for_eval(config, pretrained_weights):
model, _ = build_model_from_cfg(config, only_teacher=True)
dinov2_utils.load_pretrained_weights(model, pretrained_weights, "teacher")
model.eval()
model.cuda()
return model
def setup_and_build_model(args) -> Tuple[Any, torch.dtype]:
cudnn.benchmark = True
config = setup(args)
model = build_model_for_eval(config, args.pretrained_weights)
autocast_dtype = get_autocast_dtype(config)
return model, autocast_dtype

View File

@@ -0,0 +1,147 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Dict, Optional
import torch
from torch import nn
from torchmetrics import MetricCollection
from dinov2.data import DatasetWithEnumeratedTargets, SamplerType, make_data_loader
import dinov2.distributed as distributed
from dinov2.logging import MetricLogger
logger = logging.getLogger("dinov2")
class ModelWithNormalize(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, samples):
return nn.functional.normalize(self.model(samples), dim=1, p=2)
class ModelWithIntermediateLayers(nn.Module):
def __init__(self, feature_model, n_last_blocks, autocast_ctx):
super().__init__()
self.feature_model = feature_model
self.feature_model.eval()
self.n_last_blocks = n_last_blocks
self.autocast_ctx = autocast_ctx
def forward(self, images):
with torch.inference_mode():
with self.autocast_ctx():
features = self.feature_model.get_intermediate_layers(
images, self.n_last_blocks, return_class_token=True
)
return features
@torch.inference_mode()
def evaluate(
model: nn.Module,
data_loader,
postprocessors: Dict[str, nn.Module],
metrics: Dict[str, MetricCollection],
device: torch.device,
criterion: Optional[nn.Module] = None,
):
model.eval()
if criterion is not None:
criterion.eval()
for metric in metrics.values():
metric = metric.to(device)
metric_logger = MetricLogger(delimiter=" ")
header = "Test:"
for samples, targets, *_ in metric_logger.log_every(data_loader, 10, header):
outputs = model(samples.to(device))
targets = targets.to(device)
if criterion is not None:
loss = criterion(outputs, targets)
metric_logger.update(loss=loss.item())
for k, metric in metrics.items():
metric_inputs = postprocessors[k](outputs, targets)
metric.update(**metric_inputs)
metric_logger.synchronize_between_processes()
logger.info(f"Averaged stats: {metric_logger}")
stats = {k: metric.compute() for k, metric in metrics.items()}
metric_logger_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return metric_logger_stats, stats
def all_gather_and_flatten(tensor_rank):
tensor_all_ranks = torch.empty(
distributed.get_global_size(),
*tensor_rank.shape,
dtype=tensor_rank.dtype,
device=tensor_rank.device,
)
tensor_list = list(tensor_all_ranks.unbind(0))
torch.distributed.all_gather(tensor_list, tensor_rank.contiguous())
return tensor_all_ranks.flatten(end_dim=1)
def extract_features(model, dataset, batch_size, num_workers, gather_on_cpu=False):
dataset_with_enumerated_targets = DatasetWithEnumeratedTargets(dataset)
sample_count = len(dataset_with_enumerated_targets)
data_loader = make_data_loader(
dataset=dataset_with_enumerated_targets,
batch_size=batch_size,
num_workers=num_workers,
sampler_type=SamplerType.DISTRIBUTED,
drop_last=False,
shuffle=False,
)
return extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu)
@torch.inference_mode()
def extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu=False):
gather_device = torch.device("cpu") if gather_on_cpu else torch.device("cuda")
metric_logger = MetricLogger(delimiter=" ")
features, all_labels = None, None
for samples, (index, labels_rank) in metric_logger.log_every(data_loader, 10):
samples = samples.cuda(non_blocking=True)
labels_rank = labels_rank.cuda(non_blocking=True)
index = index.cuda(non_blocking=True)
features_rank = model(samples).float()
# init storage feature matrix
if features is None:
features = torch.zeros(sample_count, features_rank.shape[-1], device=gather_device)
labels_shape = list(labels_rank.shape)
labels_shape[0] = sample_count
all_labels = torch.full(labels_shape, fill_value=-1, device=gather_device)
logger.info(f"Storing features into tensor of shape {features.shape}")
# share indexes, features and labels between processes
index_all = all_gather_and_flatten(index).to(gather_device)
features_all_ranks = all_gather_and_flatten(features_rank).to(gather_device)
labels_all_ranks = all_gather_and_flatten(labels_rank).to(gather_device)
# update storage feature matrix
if len(index_all) > 0:
features.index_copy_(0, index_all, features_all_ranks)
all_labels.index_copy_(0, index_all, labels_all_ranks)
logger.info(f"Features shape: {tuple(features.shape)}")
logger.info(f"Labels shape: {tuple(all_labels.shape)}")
assert torch.all(all_labels > -1)
return features, all_labels

View File

@@ -0,0 +1,158 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Any
import torch
import dinov2.distributed as distributed
from functools import partial
from fvcore.common.checkpoint import Checkpointer
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import ShardingStrategy
from torch.distributed.fsdp import MixedPrecision
from torch.distributed.fsdp import StateDictType
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.fsdp._runtime_utils import _reshard
def get_fsdp_wrapper(model_cfg, modules_to_wrap=set()):
sharding_strategy_dict = {
"NO_SHARD": ShardingStrategy.NO_SHARD,
"SHARD_GRAD_OP": ShardingStrategy.SHARD_GRAD_OP,
"FULL_SHARD": ShardingStrategy.FULL_SHARD,
}
dtype_dict = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
mixed_precision_config = MixedPrecision(
param_dtype=dtype_dict[model_cfg.mixed_precision.param_dtype],
reduce_dtype=dtype_dict[model_cfg.mixed_precision.reduce_dtype],
buffer_dtype=dtype_dict[model_cfg.mixed_precision.buffer_dtype],
)
sharding_strategy_config = sharding_strategy_dict[model_cfg.sharding_strategy]
local_rank = distributed.get_local_rank()
fsdp_wrapper = partial(
FSDP,
sharding_strategy=sharding_strategy_config,
mixed_precision=mixed_precision_config,
device_id=local_rank,
sync_module_states=True,
use_orig_params=True,
auto_wrap_policy=ModuleWrapPolicy(modules_to_wrap),
)
return fsdp_wrapper
def is_fsdp(x):
return isinstance(x, FSDP)
def is_sharded_fsdp(x):
return is_fsdp(x) and x.sharding_strategy is not ShardingStrategy.NO_SHARD
def free_if_fsdp(x):
if is_sharded_fsdp(x):
handles = x._handles
true_list = [True for h in handles]
_reshard(x, handles, true_list)
def get_fsdp_modules(x):
return FSDP.fsdp_modules(x)
def reshard_fsdp_model(x):
for m in get_fsdp_modules(x):
free_if_fsdp(m)
def rankstr():
return f"rank_{distributed.get_global_rank()}"
class FSDPCheckpointer(Checkpointer):
def save(self, name: str, **kwargs: Any) -> None:
"""
Dump model and checkpointables to a file.
Args:
name (str): name of the file.
kwargs (dict): extra arbitrary data to save.
"""
if not self.save_dir or not self.save_to_disk:
return
data = {}
with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT):
data["model"] = self.model.state_dict()
# data["model"] = self.model.state_dict()
for key, obj in self.checkpointables.items():
data[key] = obj.state_dict()
data.update(kwargs)
basename = f"{name}.{rankstr()}.pth"
save_file = os.path.join(self.save_dir, basename)
assert os.path.basename(save_file) == basename, basename
self.logger.info("Saving checkpoint to {}".format(save_file))
with self.path_manager.open(save_file, "wb") as f:
torch.save(data, f)
self.tag_last_checkpoint(basename)
def load(self, *args, **kwargs):
with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT):
return super().load(*args, **kwargs)
def has_checkpoint(self) -> bool:
"""
Returns:
bool: whether a checkpoint exists in the target directory.
"""
save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}")
return self.path_manager.exists(save_file)
def get_checkpoint_file(self) -> str:
"""
Returns:
str: The latest checkpoint file in target directory.
"""
save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}")
try:
with self.path_manager.open(save_file, "r") as f:
last_saved = f.read().strip()
except IOError:
# if file doesn't exist, maybe because it has just been
# deleted by a separate process
return ""
# pyre-fixme[6]: For 2nd param expected `Union[PathLike[str], str]` but got
# `Union[bytes, str]`.
return os.path.join(self.save_dir, last_saved)
def tag_last_checkpoint(self, last_filename_basename: str) -> None:
"""
Tag the last checkpoint.
Args:
last_filename_basename (str): the basename of the last filename.
"""
if distributed.is_enabled():
torch.distributed.barrier()
save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}")
with self.path_manager.open(save_file, "w") as f:
f.write(last_filename_basename) # pyre-ignore
ShardedGradScaler = ShardedGradScaler

View File

@@ -0,0 +1,12 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .dino_head import DINOHead
from .mlp import Mlp
from .patch_embed import PatchEmbed
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
from .block import NestedTensorBlock
from .attention import MemEffAttention

Some files were not shown because too many files have changed in this diff Show More