Files
keepass2android/src/KeePassLib2Android/Cryptography/CryptoRandomStream.cs

287 lines
9.1 KiB
C#

/*
KeePass Password Safe - The Open-Source Password Manager
Copyright (C) 2003-2025 Dominik Reichl <dominik.reichl@t-online.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
using System;
using System.Diagnostics;
#if !KeePassUAP
using System.Security.Cryptography;
#endif
using KeePassLib.Cryptography.Cipher;
using KeePassLib.Utility;
namespace KeePassLib.Cryptography
{
/// <summary>
/// Algorithms supported by <c>CryptoRandomStream</c>.
/// </summary>
public enum CrsAlgorithm
{
/// <summary>
/// Not supported.
/// </summary>
Null = 0,
/// <summary>
/// A variant of the ArcFour algorithm (RC4 incompatible).
/// Insecure; for backward compatibility only.
/// </summary>
ArcFourVariant = 1,
/// <summary>
/// Salsa20 stream cipher algorithm.
/// </summary>
Salsa20 = 2,
/// <summary>
/// ChaCha20 stream cipher algorithm.
/// </summary>
ChaCha20 = 3,
Count = 4
}
/// <summary>
/// A random stream class. The class is initialized using random
/// bytes provided by the caller. The produced stream has random
/// properties, but for the same seed always the same stream
/// is produced, i.e. this class can be used as stream cipher.
/// </summary>
public sealed class CryptoRandomStream : IDisposable
{
private readonly CrsAlgorithm m_alg;
private bool m_bDisposed = false;
private readonly byte[] m_pbKey = null;
private readonly byte[] m_pbIV = null;
private readonly ChaCha20Cipher m_chacha20 = null;
private readonly Salsa20Cipher m_salsa20 = null;
private readonly byte[] m_pbState = null;
private byte m_i = 0;
private byte m_j = 0;
/// <summary>
/// Construct a new cryptographically secure random stream object.
/// </summary>
/// <param name="a">Algorithm to use.</param>
/// <param name="pbKey">Initialization key. Must not be <c>null</c>
/// and must contain at least 1 byte.</param>
public CryptoRandomStream(CrsAlgorithm a, byte[] pbKey)
{
if (pbKey == null) { Debug.Assert(false); throw new ArgumentNullException("pbKey"); }
int cbKey = pbKey.Length;
if (cbKey <= 0)
{
Debug.Assert(false); // Need at least one byte
throw new ArgumentOutOfRangeException("pbKey");
}
m_alg = a;
if (a == CrsAlgorithm.ChaCha20)
{
m_pbKey = new byte[32];
m_pbIV = new byte[12];
using (SHA512Managed h = new SHA512Managed())
{
byte[] pbHash = h.ComputeHash(pbKey);
Array.Copy(pbHash, m_pbKey, 32);
Array.Copy(pbHash, 32, m_pbIV, 0, 12);
MemUtil.ZeroByteArray(pbHash);
}
m_chacha20 = new ChaCha20Cipher(m_pbKey, m_pbIV, true);
}
else if (a == CrsAlgorithm.Salsa20)
{
m_pbKey = CryptoUtil.HashSha256(pbKey);
m_pbIV = new byte[8] { 0xE8, 0x30, 0x09, 0x4B,
0x97, 0x20, 0x5D, 0x2A }; // Unique constant
m_salsa20 = new Salsa20Cipher(m_pbKey, m_pbIV);
}
else if (a == CrsAlgorithm.ArcFourVariant)
{
// Fill the state linearly
m_pbState = new byte[256];
for (int w = 0; w < 256; ++w) m_pbState[w] = (byte)w;
unchecked
{
byte j = 0, t;
int inxKey = 0;
for (int w = 0; w < 256; ++w) // Key setup
{
j += (byte)(m_pbState[w] + pbKey[inxKey]);
t = m_pbState[0]; // Swap entries
m_pbState[0] = m_pbState[j];
m_pbState[j] = t;
++inxKey;
if (inxKey >= cbKey) inxKey = 0;
}
}
GetRandomBytes(512); // Increases security, see cryptanalysis
}
else // Unknown algorithm
{
Debug.Assert(false);
throw new ArgumentOutOfRangeException("a");
}
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
private void Dispose(bool disposing)
{
if (disposing)
{
if (m_alg == CrsAlgorithm.ChaCha20)
m_chacha20.Dispose();
else if (m_alg == CrsAlgorithm.Salsa20)
m_salsa20.Dispose();
else if (m_alg == CrsAlgorithm.ArcFourVariant)
{
MemUtil.ZeroByteArray(m_pbState);
m_i = 0;
m_j = 0;
}
else { Debug.Assert(false); }
if (m_pbKey != null) MemUtil.ZeroByteArray(m_pbKey);
if (m_pbIV != null) MemUtil.ZeroByteArray(m_pbIV);
m_bDisposed = true;
}
}
/// <summary>
/// Get <paramref name="uRequestedCount" /> random bytes.
/// </summary>
/// <param name="uRequestedCount">Number of random bytes to retrieve.</param>
/// <returns>Returns <paramref name="uRequestedCount" /> random bytes.</returns>
public byte[] GetRandomBytes(uint uRequestedCount)
{
if (m_bDisposed) throw new ObjectDisposedException(null);
if (uRequestedCount == 0) return MemUtil.EmptyByteArray;
if (uRequestedCount > (uint)int.MaxValue)
throw new ArgumentOutOfRangeException("uRequestedCount");
int cb = (int)uRequestedCount;
byte[] pbRet = new byte[cb];
if (m_alg == CrsAlgorithm.ChaCha20)
m_chacha20.Encrypt(pbRet, 0, cb);
else if (m_alg == CrsAlgorithm.Salsa20)
m_salsa20.Encrypt(pbRet, 0, cb);
else if (m_alg == CrsAlgorithm.ArcFourVariant)
{
unchecked
{
for (int w = 0; w < cb; ++w)
{
++m_i;
m_j += m_pbState[m_i];
byte t = m_pbState[m_i]; // Swap entries
m_pbState[m_i] = m_pbState[m_j];
m_pbState[m_j] = t;
t = (byte)(m_pbState[m_i] + m_pbState[m_j]);
pbRet[w] = m_pbState[t];
}
}
}
else { Debug.Assert(false); }
return pbRet;
}
public ulong GetRandomUInt64()
{
byte[] pb = GetRandomBytes(8);
return MemUtil.BytesToUInt64(pb);
}
internal ulong GetRandomUInt64(ulong uMaxExcl)
{
if (uMaxExcl == 0) { Debug.Assert(false); throw new ArgumentOutOfRangeException("uMaxExcl"); }
ulong uGen, uRem;
do
{
uGen = GetRandomUInt64();
uRem = uGen % uMaxExcl;
}
while ((uGen - uRem) > (ulong.MaxValue - (uMaxExcl - 1UL)));
// This ensures that the last number of the block (i.e.
// (uGen - uRem) + (uMaxExcl - 1)) is generatable;
// for signed longs, overflow to negative number:
// while((uGen - uRem) + (uMaxExcl - 1) < 0);
return uRem;
}
#if CRSBENCHMARK
public static string Benchmark()
{
int nRounds = 2000000;
string str = "ArcFour small: " + BenchTime(CrsAlgorithm.ArcFourVariant,
nRounds, 16).ToString() + "\r\n";
str += "ArcFour big: " + BenchTime(CrsAlgorithm.ArcFourVariant,
32, 2 * 1024 * 1024).ToString() + "\r\n";
str += "Salsa20 small: " + BenchTime(CrsAlgorithm.Salsa20,
nRounds, 16).ToString() + "\r\n";
str += "Salsa20 big: " + BenchTime(CrsAlgorithm.Salsa20,
32, 2 * 1024 * 1024).ToString();
return str;
}
private static int BenchTime(CrsAlgorithm a, int nRounds, int cbData)
{
byte[] pbKey = new byte[4] { 0x00, 0x01, 0x02, 0x03 };
int tStart = Environment.TickCount;
for(int i = 0; i < nRounds; ++i)
{
using(CryptoRandomStream crs = new CryptoRandomStream(a, pbKey))
{
crs.GetRandomBytes((uint)cbData);
}
}
return (Environment.TickCount - tStart);
}
#endif
}
}