Release smaller metric depth models

This commit is contained in:
Lihe Yang
2024-06-21 09:40:06 -07:00
committed by GitHub
parent 4417cd6ba6
commit f5115d398d
2 changed files with 115 additions and 39 deletions

View File

@@ -21,6 +21,7 @@ This work presents Depth Anything V2. It significantly outperforms [V1](https://
## News
- **2024-06-22:** We release smaller metric depth models based on Depth-Anything-V2-Small and Base.
- **2024-06-20:** Our repository and project page are flagged by GitHub and removed from the public for 6 days. Sorry for the inconvenience.
- **2024-06-14:** Paper, project page, code, models, demo, and benchmark are all released.
@@ -36,26 +37,9 @@ We provide **four models** of varying scales for robust relative depth estimatio
| Depth-Anything-V2-Large | 335.3M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true) |
| Depth-Anything-V2-Giant | 1.3B | Coming soon |
### Code snippet to use our models
```python
import cv2
import torch
from depth_anything_v2.dpt import DepthAnythingV2
# take depth-anything-v2-large as an example
model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vitl.pth', map_location='cpu'))
model.eval()
raw_img = cv2.imread('your/image/path')
depth = model.infer_image(raw_img) # HxW raw depth map
```
## Usage
### Installation
### Prepraration
```bash
git clone https://github.com/DepthAnything/Depth-Anything-V2
@@ -63,14 +47,43 @@ cd Depth-Anything-V2
pip install -r requirements.txt
```
### Running
Download the checkpoints listed [here](#pre-trained-models) and put them under the `checkpoints` directory.
### Use our models
```python
import cv2
import torch
from depth_anything_v2.dpt import DepthAnythingV2
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl' # or 'vits', 'vitb', 'vitg'
model = DepthAnythingV2(**model_configs[encoder])
model.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{encoder}.pth', map_location='cpu'))
model.eval()
raw_img = cv2.imread('your/image/path')
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
```
### Running script on *images*
```bash
python run.py --encoder <vits | vitb | vitl> --img-path <path> --outdir <outdir> [--input-size <size>] [--pred-only] [--grayscale]
python run.py \
--encoder <vits | vitb | vitl | vitg> \
--img-path <path> --outdir <outdir> \
[--input-size <size>] [--pred-only] [--grayscale]
```
Options:
- `--img-path`: You can either 1) point it to an image directory storing all interested images, 2) point it to a single image, or 3) point it to a text file storing all image paths.
- `--input-size` (optional): By default, we use input size `518` for model inference. **You can increase the size for even more fine-grained results.**
- `--input-size` (optional): By default, we use input size `518` for model inference. ***You can increase the size for even more fine-grained results.***
- `--pred-only` (optional): Only save the predicted depth map, without raw image.
- `--grayscale` (optional): Save the grayscale depth map, without applying color palette.
@@ -79,13 +92,16 @@ For example:
python run.py --encoder vitl --img-path assets/examples --outdir depth_vis
```
**If you want to use Depth Anything V2 on videos:**
### Running script on *videos*
```bash
python run_video.py --encoder <vits | vitb | vitl> --video-path assets/examples_video --outdir video_depth_vis [--input-size <size>] [--pred-only] [--grayscale]
python run_video.py \
--encoder <vits | vitb | vitl | vitg> \
--video-path assets/examples_video --outdir video_depth_vis \
[--input-size <size>] [--pred-only] [--grayscale]
```
*Please note that our larger model has better temporal consistency on videos.*
***Our larger model has better temporal consistency on videos.***
### Gradio demo
@@ -98,7 +114,7 @@ python app.py
You can also try our [online demo](https://huggingface.co/spaces/Depth-Anything/Depth-Anything-V2).
**Note: Compared to V1, we have made a minor modification to the DINOv2-DPT architecture (originating from this [issue](https://github.com/LiheYoung/Depth-Anything/issues/81)).** In V1, we *unintentionally* used features from the last four layers of DINOv2 for decoding. In V2, we use [intermediate features](https://github.com/DepthAnything/Depth-Anything-V2/blob/2cbc36a8ce2cec41d38ee51153f112e87c8e42d8/depth_anything_v2/dpt.py#L164-L169) instead. Although this modification did not improve details or accuracy, we decided to follow this common practice.
***Note: Compared to V1, we have made a minor modification to the DINOv2-DPT architecture (originating from this [issue](https://github.com/LiheYoung/Depth-Anything/issues/81)).*** In V1, we *unintentionally* used features from the last four layers of DINOv2 for decoding. In V2, we use [intermediate features](https://github.com/DepthAnything/Depth-Anything-V2/blob/2cbc36a8ce2cec41d38ee51153f112e87c8e42d8/depth_anything_v2/dpt.py#L164-L169) instead. Although this modification did not improve details or accuracy, we decided to follow this common practice.
@@ -115,9 +131,10 @@ Please refer to [DA-2K benchmark](./DA-2K.md).
**We sincerely appreciate all the community support for our Depth Anything series. Thank you a lot!**
- Depth Anything V2 TensorRT: https://github.com/spacewalk01/depth-anything-tensorrt
- Depth Anything V2 in ComfyUI: https://github.com/kijai/ComfyUI-DepthAnythingV2
- Depth Anything V2 in Android:
- TensorRT: https://github.com/spacewalk01/depth-anything-tensorrt
- ComfyUI: https://github.com/kijai/ComfyUI-DepthAnythingV2
- Transformers.js (real-time depth in web): https://huggingface.co/spaces/Xenova/webgpu-realtime-depth-estimation
- Android:
- https://github.com/shubham0204/Depth-Anything-Android
- https://github.com/FeiGeChuanShu/ncnn-android-depth_anything

View File

@@ -5,31 +5,83 @@
We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively.
# Pre-trained Models
We provide **six metric depth models** of three scales for indoor and outdoor scenes, respectively.
| Base Model | Params | Indoor (Hypersim) | Outdoor (Virtual KITTI 2) |
|:-|-:|:-:|:-:|
| Depth-Anything-V2-Small | 24.8M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Small/resolve/main/depth_anything_v2_metric_hypersim_vits.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Small/resolve/main/depth_anything_v2_metric_vkitti_vits.pth?download=true) |
| Depth-Anything-V2-Base | 97.5M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Base/resolve/main/depth_anything_v2_metric_hypersim_vitb.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Base/resolve/main/depth_anything_v2_metric_vkitti_vitb.pth?download=true) |
| Depth-Anything-V2-Large | 335.3M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true) | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true) |
*We recommend to first try our larger models (if computational cost is affordable) and the indoor version.*
## Usage
### Inference
### Prepraration
Please first download our pre-trained metric depth models and put them under the `checkpoints` directory:
- [Indoor model from Hypersim](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true)
- [Outdoor model from Virtual KITTI 2](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true)
```bash
git clone https://github.com/DepthAnything/Depth-Anything-V2
cd Depth-Anything-V2/metric_depth
pip install -r requirements.txt
```
Download the checkpoints listed [here](#pre-trained-models) and put them under the `checkpoints` directory.
### Use our models
```python
import cv2
import torch
from depth_anything_v2.dpt import DepthAnythingV2
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}
}
encoder = 'vitl' # or 'vits', 'vitb'
dataset = 'hypersim' # 'hypersim' for indoor model, 'vkitti' for outdoor model
max_depth = 20 # 20 for indoor model, 80 for outdoor model
model = DepthAnythingV2(**{**model_configs[encoder], 'max_depth': max_depth})
model.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_metric_{dataset}_{encoder}.pth', map_location='cpu'))
model.eval()
raw_img = cv2.imread('your/image/path')
depth = model.infer_image(raw_img) # HxW depth map in meters in numpy
```
### Running script on images
Here, we take the `vitl` encoder as an example. You can also use `vitb` or `vits` encoders.
```bash
# indoor scenes
python run.py \
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
--max-depth 20 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
--encoder vitl \
--load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
--max-depth 20 \
--img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
# outdoor scenes
python run.py \
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \
--max-depth 80 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
--encoder vitl \
--load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \
--max-depth 80 \
--img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
```
You can also project 2D images to point clouds:
### Project 2D images to point clouds:
```bash
python depth_to_pointcloud.py \
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
--max-depth 20 --img-path <path> --outdir <outdir>
--encoder vitl \
--load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
--max-depth 20 \
--img-path <path> --outdir <outdir>
```
### Reproduce training
@@ -52,4 +104,11 @@ If you find this project useful, please consider citing:
journal={arXiv:2406.09414},
year={2024}
}
@inproceedings{depth_anything_v1,
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
booktitle={CVPR},
year={2024}
}
```