Initial commit
This commit is contained in:
		
							
								
								
									
										73
									
								
								run.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										73
									
								
								run.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,73 @@ | ||||
| import argparse | ||||
| import cv2 | ||||
| import glob | ||||
| import matplotlib | ||||
| import numpy as np | ||||
| import os | ||||
| import torch | ||||
|  | ||||
| from depth_anything_v2.dpt import DepthAnythingV2 | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     parser = argparse.ArgumentParser(description='Depth Anything V2') | ||||
|      | ||||
|     parser.add_argument('--img-path', type=str) | ||||
|     parser.add_argument('--input-size', type=int, default=518) | ||||
|     parser.add_argument('--outdir', type=str, default='./vis_depth') | ||||
|      | ||||
|     parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg']) | ||||
|      | ||||
|     parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction') | ||||
|     parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette') | ||||
|      | ||||
|     args = parser.parse_args() | ||||
|      | ||||
|     DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' | ||||
|      | ||||
|     model_configs = { | ||||
|         'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | ||||
|         'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | ||||
|         'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | ||||
|         'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | ||||
|     } | ||||
|      | ||||
|     depth_anything = DepthAnythingV2(**model_configs[args.encoder]) | ||||
|     depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{args.encoder}.pth', map_location='cpu')) | ||||
|     depth_anything = depth_anything.to(DEVICE).eval() | ||||
|      | ||||
|     if os.path.isfile(args.img_path): | ||||
|         if args.img_path.endswith('txt'): | ||||
|             with open(args.img_path, 'r') as f: | ||||
|                 filenames = f.read().splitlines() | ||||
|         else: | ||||
|             filenames = [args.img_path] | ||||
|     else: | ||||
|         filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True) | ||||
|      | ||||
|     os.makedirs(args.outdir, exist_ok=True) | ||||
|      | ||||
|     cmap = matplotlib.colormaps.get_cmap('Spectral_r') | ||||
|      | ||||
|     for k, filename in enumerate(filenames): | ||||
|         print(f'Progress {k+1}/{len(filenames)}: {filename}') | ||||
|          | ||||
|         raw_image = cv2.imread(filename) | ||||
|          | ||||
|         depth = depth_anything.infer_image(raw_image, args.input_size) | ||||
|          | ||||
|         depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | ||||
|         depth = depth.astype(np.uint8) | ||||
|          | ||||
|         if args.grayscale: | ||||
|             depth = np.repeat(depth[..., np.newaxis], 3, axis=-1) | ||||
|         else: | ||||
|             depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8) | ||||
|          | ||||
|         if args.pred_only: | ||||
|             cv2.imwrite(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png'), depth) | ||||
|         else: | ||||
|             split_region = np.ones((raw_image.shape[0], 50, 3), dtype=np.uint8) * 255 | ||||
|             combined_result = cv2.hconcat([raw_image, split_region, depth]) | ||||
|              | ||||
|             cv2.imwrite(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png'), combined_result) | ||||
		Reference in New Issue
	
	Block a user
	 Lihe Yang
					Lihe Yang