Initial commit
This commit is contained in:
55
metric_depth/README.md
Normal file
55
metric_depth/README.md
Normal file
@@ -0,0 +1,55 @@
|
||||
# Depth Anything V2 for Metric Depth Estimation
|
||||
|
||||

|
||||
|
||||
We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively.
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
### Inference
|
||||
|
||||
Please first download our pre-trained metric depth models and put them under the `checkpoints` directory:
|
||||
- [Indoor model from Hypersim](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth.pth?download=true)
|
||||
- [Outdoor model from Virtual KITTI 2](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth.pth?download=true)
|
||||
|
||||
```bash
|
||||
# indoor scenes
|
||||
python run.py \
|
||||
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
|
||||
--max-depth 20 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
|
||||
|
||||
# outdoor scenes
|
||||
python run.py \
|
||||
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \
|
||||
--max-depth 80 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
|
||||
```
|
||||
|
||||
You can also project 2D images to point clouds:
|
||||
```bash
|
||||
python depth_to_pointcloud.py \
|
||||
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
|
||||
--max-depth 20 --img-path <path> --outdir <outdir>
|
||||
```
|
||||
|
||||
### Reproduce training
|
||||
|
||||
Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then:
|
||||
|
||||
```bash
|
||||
bash dist_train.sh
|
||||
```
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
If you find this project useful, please consider citing:
|
||||
|
||||
```bibtex
|
||||
@article{depth_anything_v2,
|
||||
title={Depth Anything V2},
|
||||
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
|
||||
journal={arXiv preprint arXiv:},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
Reference in New Issue
Block a user