Initial commit
This commit is contained in:
11
depth_anything_v2/dinov2_layers/__init__.py
Normal file
11
depth_anything_v2/dinov2_layers/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from .mlp import Mlp
|
||||
from .patch_embed import PatchEmbed
|
||||
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
|
||||
from .block import NestedTensorBlock
|
||||
from .attention import MemEffAttention
|
||||
83
depth_anything_v2/dinov2_layers/attention.py
Normal file
83
depth_anything_v2/dinov2_layers/attention.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# References:
|
||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
||||
|
||||
import logging
|
||||
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
|
||||
|
||||
logger = logging.getLogger("dinov2")
|
||||
|
||||
|
||||
try:
|
||||
from xformers.ops import memory_efficient_attention, unbind, fmha
|
||||
|
||||
XFORMERS_AVAILABLE = True
|
||||
except ImportError:
|
||||
logger.warning("xFormers not available")
|
||||
XFORMERS_AVAILABLE = False
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int = 8,
|
||||
qkv_bias: bool = False,
|
||||
proj_bias: bool = True,
|
||||
attn_drop: float = 0.0,
|
||||
proj_drop: float = 0.0,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
|
||||
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
||||
attn = q @ k.transpose(-2, -1)
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class MemEffAttention(Attention):
|
||||
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
||||
if not XFORMERS_AVAILABLE:
|
||||
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
||||
return super().forward(x)
|
||||
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
||||
|
||||
q, k, v = unbind(qkv, 2)
|
||||
|
||||
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
||||
x = x.reshape([B, N, C])
|
||||
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
252
depth_anything_v2/dinov2_layers/block.py
Normal file
252
depth_anything_v2/dinov2_layers/block.py
Normal file
@@ -0,0 +1,252 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# References:
|
||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
||||
|
||||
import logging
|
||||
from typing import Callable, List, Any, Tuple, Dict
|
||||
|
||||
import torch
|
||||
from torch import nn, Tensor
|
||||
|
||||
from .attention import Attention, MemEffAttention
|
||||
from .drop_path import DropPath
|
||||
from .layer_scale import LayerScale
|
||||
from .mlp import Mlp
|
||||
|
||||
|
||||
logger = logging.getLogger("dinov2")
|
||||
|
||||
|
||||
try:
|
||||
from xformers.ops import fmha
|
||||
from xformers.ops import scaled_index_add, index_select_cat
|
||||
|
||||
XFORMERS_AVAILABLE = True
|
||||
except ImportError:
|
||||
logger.warning("xFormers not available")
|
||||
XFORMERS_AVAILABLE = False
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qkv_bias: bool = False,
|
||||
proj_bias: bool = True,
|
||||
ffn_bias: bool = True,
|
||||
drop: float = 0.0,
|
||||
attn_drop: float = 0.0,
|
||||
init_values=None,
|
||||
drop_path: float = 0.0,
|
||||
act_layer: Callable[..., nn.Module] = nn.GELU,
|
||||
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
||||
attn_class: Callable[..., nn.Module] = Attention,
|
||||
ffn_layer: Callable[..., nn.Module] = Mlp,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = attn_class(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
proj_bias=proj_bias,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=drop,
|
||||
)
|
||||
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = ffn_layer(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
bias=ffn_bias,
|
||||
)
|
||||
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
self.sample_drop_ratio = drop_path
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
def attn_residual_func(x: Tensor) -> Tensor:
|
||||
return self.ls1(self.attn(self.norm1(x)))
|
||||
|
||||
def ffn_residual_func(x: Tensor) -> Tensor:
|
||||
return self.ls2(self.mlp(self.norm2(x)))
|
||||
|
||||
if self.training and self.sample_drop_ratio > 0.1:
|
||||
# the overhead is compensated only for a drop path rate larger than 0.1
|
||||
x = drop_add_residual_stochastic_depth(
|
||||
x,
|
||||
residual_func=attn_residual_func,
|
||||
sample_drop_ratio=self.sample_drop_ratio,
|
||||
)
|
||||
x = drop_add_residual_stochastic_depth(
|
||||
x,
|
||||
residual_func=ffn_residual_func,
|
||||
sample_drop_ratio=self.sample_drop_ratio,
|
||||
)
|
||||
elif self.training and self.sample_drop_ratio > 0.0:
|
||||
x = x + self.drop_path1(attn_residual_func(x))
|
||||
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
||||
else:
|
||||
x = x + attn_residual_func(x)
|
||||
x = x + ffn_residual_func(x)
|
||||
return x
|
||||
|
||||
|
||||
def drop_add_residual_stochastic_depth(
|
||||
x: Tensor,
|
||||
residual_func: Callable[[Tensor], Tensor],
|
||||
sample_drop_ratio: float = 0.0,
|
||||
) -> Tensor:
|
||||
# 1) extract subset using permutation
|
||||
b, n, d = x.shape
|
||||
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
||||
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
||||
x_subset = x[brange]
|
||||
|
||||
# 2) apply residual_func to get residual
|
||||
residual = residual_func(x_subset)
|
||||
|
||||
x_flat = x.flatten(1)
|
||||
residual = residual.flatten(1)
|
||||
|
||||
residual_scale_factor = b / sample_subset_size
|
||||
|
||||
# 3) add the residual
|
||||
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
||||
return x_plus_residual.view_as(x)
|
||||
|
||||
|
||||
def get_branges_scales(x, sample_drop_ratio=0.0):
|
||||
b, n, d = x.shape
|
||||
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
||||
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
||||
residual_scale_factor = b / sample_subset_size
|
||||
return brange, residual_scale_factor
|
||||
|
||||
|
||||
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
||||
if scaling_vector is None:
|
||||
x_flat = x.flatten(1)
|
||||
residual = residual.flatten(1)
|
||||
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
||||
else:
|
||||
x_plus_residual = scaled_index_add(
|
||||
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
||||
)
|
||||
return x_plus_residual
|
||||
|
||||
|
||||
attn_bias_cache: Dict[Tuple, Any] = {}
|
||||
|
||||
|
||||
def get_attn_bias_and_cat(x_list, branges=None):
|
||||
"""
|
||||
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
||||
"""
|
||||
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
||||
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
||||
if all_shapes not in attn_bias_cache.keys():
|
||||
seqlens = []
|
||||
for b, x in zip(batch_sizes, x_list):
|
||||
for _ in range(b):
|
||||
seqlens.append(x.shape[1])
|
||||
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
||||
attn_bias._batch_sizes = batch_sizes
|
||||
attn_bias_cache[all_shapes] = attn_bias
|
||||
|
||||
if branges is not None:
|
||||
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
||||
else:
|
||||
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
||||
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
||||
|
||||
return attn_bias_cache[all_shapes], cat_tensors
|
||||
|
||||
|
||||
def drop_add_residual_stochastic_depth_list(
|
||||
x_list: List[Tensor],
|
||||
residual_func: Callable[[Tensor, Any], Tensor],
|
||||
sample_drop_ratio: float = 0.0,
|
||||
scaling_vector=None,
|
||||
) -> Tensor:
|
||||
# 1) generate random set of indices for dropping samples in the batch
|
||||
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
||||
branges = [s[0] for s in branges_scales]
|
||||
residual_scale_factors = [s[1] for s in branges_scales]
|
||||
|
||||
# 2) get attention bias and index+concat the tensors
|
||||
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
||||
|
||||
# 3) apply residual_func to get residual, and split the result
|
||||
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
||||
|
||||
outputs = []
|
||||
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
||||
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
||||
return outputs
|
||||
|
||||
|
||||
class NestedTensorBlock(Block):
|
||||
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
||||
"""
|
||||
x_list contains a list of tensors to nest together and run
|
||||
"""
|
||||
assert isinstance(self.attn, MemEffAttention)
|
||||
|
||||
if self.training and self.sample_drop_ratio > 0.0:
|
||||
|
||||
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
||||
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
||||
|
||||
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
||||
return self.mlp(self.norm2(x))
|
||||
|
||||
x_list = drop_add_residual_stochastic_depth_list(
|
||||
x_list,
|
||||
residual_func=attn_residual_func,
|
||||
sample_drop_ratio=self.sample_drop_ratio,
|
||||
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
||||
)
|
||||
x_list = drop_add_residual_stochastic_depth_list(
|
||||
x_list,
|
||||
residual_func=ffn_residual_func,
|
||||
sample_drop_ratio=self.sample_drop_ratio,
|
||||
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
||||
)
|
||||
return x_list
|
||||
else:
|
||||
|
||||
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
||||
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
||||
|
||||
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
||||
return self.ls2(self.mlp(self.norm2(x)))
|
||||
|
||||
attn_bias, x = get_attn_bias_and_cat(x_list)
|
||||
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
||||
x = x + ffn_residual_func(x)
|
||||
return attn_bias.split(x)
|
||||
|
||||
def forward(self, x_or_x_list):
|
||||
if isinstance(x_or_x_list, Tensor):
|
||||
return super().forward(x_or_x_list)
|
||||
elif isinstance(x_or_x_list, list):
|
||||
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
||||
return self.forward_nested(x_or_x_list)
|
||||
else:
|
||||
raise AssertionError
|
||||
35
depth_anything_v2/dinov2_layers/drop_path.py
Normal file
35
depth_anything_v2/dinov2_layers/drop_path.py
Normal file
@@ -0,0 +1,35 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# References:
|
||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
||||
|
||||
|
||||
from torch import nn
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
||||
if drop_prob == 0.0 or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0:
|
||||
random_tensor.div_(keep_prob)
|
||||
output = x * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
||||
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
28
depth_anything_v2/dinov2_layers/layer_scale.py
Normal file
28
depth_anything_v2/dinov2_layers/layer_scale.py
Normal file
@@ -0,0 +1,28 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
||||
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
init_values: Union[float, Tensor] = 1e-5,
|
||||
inplace: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.inplace = inplace
|
||||
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
||||
41
depth_anything_v2/dinov2_layers/mlp.py
Normal file
41
depth_anything_v2/dinov2_layers/mlp.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# References:
|
||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
||||
|
||||
|
||||
from typing import Callable, Optional
|
||||
|
||||
from torch import Tensor, nn
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_features: Optional[int] = None,
|
||||
out_features: Optional[int] = None,
|
||||
act_layer: Callable[..., nn.Module] = nn.GELU,
|
||||
drop: float = 0.0,
|
||||
bias: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
89
depth_anything_v2/dinov2_layers/patch_embed.py
Normal file
89
depth_anything_v2/dinov2_layers/patch_embed.py
Normal file
@@ -0,0 +1,89 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# References:
|
||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
||||
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
|
||||
from torch import Tensor
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def make_2tuple(x):
|
||||
if isinstance(x, tuple):
|
||||
assert len(x) == 2
|
||||
return x
|
||||
|
||||
assert isinstance(x, int)
|
||||
return (x, x)
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
||||
|
||||
Args:
|
||||
img_size: Image size.
|
||||
patch_size: Patch token size.
|
||||
in_chans: Number of input image channels.
|
||||
embed_dim: Number of linear projection output channels.
|
||||
norm_layer: Normalization layer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: Union[int, Tuple[int, int]] = 224,
|
||||
patch_size: Union[int, Tuple[int, int]] = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
norm_layer: Optional[Callable] = None,
|
||||
flatten_embedding: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
image_HW = make_2tuple(img_size)
|
||||
patch_HW = make_2tuple(patch_size)
|
||||
patch_grid_size = (
|
||||
image_HW[0] // patch_HW[0],
|
||||
image_HW[1] // patch_HW[1],
|
||||
)
|
||||
|
||||
self.img_size = image_HW
|
||||
self.patch_size = patch_HW
|
||||
self.patches_resolution = patch_grid_size
|
||||
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
||||
|
||||
self.in_chans = in_chans
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
self.flatten_embedding = flatten_embedding
|
||||
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
||||
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
_, _, H, W = x.shape
|
||||
patch_H, patch_W = self.patch_size
|
||||
|
||||
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
||||
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
||||
|
||||
x = self.proj(x) # B C H W
|
||||
H, W = x.size(2), x.size(3)
|
||||
x = x.flatten(2).transpose(1, 2) # B HW C
|
||||
x = self.norm(x)
|
||||
if not self.flatten_embedding:
|
||||
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
||||
return x
|
||||
|
||||
def flops(self) -> float:
|
||||
Ho, Wo = self.patches_resolution
|
||||
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
||||
if self.norm is not None:
|
||||
flops += Ho * Wo * self.embed_dim
|
||||
return flops
|
||||
63
depth_anything_v2/dinov2_layers/swiglu_ffn.py
Normal file
63
depth_anything_v2/dinov2_layers/swiglu_ffn.py
Normal file
@@ -0,0 +1,63 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Callable, Optional
|
||||
|
||||
from torch import Tensor, nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class SwiGLUFFN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_features: Optional[int] = None,
|
||||
out_features: Optional[int] = None,
|
||||
act_layer: Callable[..., nn.Module] = None,
|
||||
drop: float = 0.0,
|
||||
bias: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
||||
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x12 = self.w12(x)
|
||||
x1, x2 = x12.chunk(2, dim=-1)
|
||||
hidden = F.silu(x1) * x2
|
||||
return self.w3(hidden)
|
||||
|
||||
|
||||
try:
|
||||
from xformers.ops import SwiGLU
|
||||
|
||||
XFORMERS_AVAILABLE = True
|
||||
except ImportError:
|
||||
SwiGLU = SwiGLUFFN
|
||||
XFORMERS_AVAILABLE = False
|
||||
|
||||
|
||||
class SwiGLUFFNFused(SwiGLU):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_features: Optional[int] = None,
|
||||
out_features: Optional[int] = None,
|
||||
act_layer: Callable[..., nn.Module] = None,
|
||||
drop: float = 0.0,
|
||||
bias: bool = True,
|
||||
) -> None:
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
hidden_features=hidden_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
)
|
||||
Reference in New Issue
Block a user