Initial commit
This commit is contained in:
415
depth_anything_v2/dinov2.py
Normal file
415
depth_anything_v2/dinov2.py
Normal file
@@ -0,0 +1,415 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the Apache License, Version 2.0
|
||||
# found in the LICENSE file in the root directory of this source tree.
|
||||
|
||||
# References:
|
||||
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
||||
|
||||
from functools import partial
|
||||
import math
|
||||
import logging
|
||||
from typing import Sequence, Tuple, Union, Callable
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from torch.nn.init import trunc_normal_
|
||||
|
||||
from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
|
||||
|
||||
|
||||
logger = logging.getLogger("dinov2")
|
||||
|
||||
|
||||
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
||||
if not depth_first and include_root:
|
||||
fn(module=module, name=name)
|
||||
for child_name, child_module in module.named_children():
|
||||
child_name = ".".join((name, child_name)) if name else child_name
|
||||
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
||||
if depth_first and include_root:
|
||||
fn(module=module, name=name)
|
||||
return module
|
||||
|
||||
|
||||
class BlockChunk(nn.ModuleList):
|
||||
def forward(self, x):
|
||||
for b in self:
|
||||
x = b(x)
|
||||
return x
|
||||
|
||||
|
||||
class DinoVisionTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
in_chans=3,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4.0,
|
||||
qkv_bias=True,
|
||||
ffn_bias=True,
|
||||
proj_bias=True,
|
||||
drop_path_rate=0.0,
|
||||
drop_path_uniform=False,
|
||||
init_values=None, # for layerscale: None or 0 => no layerscale
|
||||
embed_layer=PatchEmbed,
|
||||
act_layer=nn.GELU,
|
||||
block_fn=Block,
|
||||
ffn_layer="mlp",
|
||||
block_chunks=1,
|
||||
num_register_tokens=0,
|
||||
interpolate_antialias=False,
|
||||
interpolate_offset=0.1,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
img_size (int, tuple): input image size
|
||||
patch_size (int, tuple): patch size
|
||||
in_chans (int): number of input channels
|
||||
embed_dim (int): embedding dimension
|
||||
depth (int): depth of transformer
|
||||
num_heads (int): number of attention heads
|
||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
||||
qkv_bias (bool): enable bias for qkv if True
|
||||
proj_bias (bool): enable bias for proj in attn if True
|
||||
ffn_bias (bool): enable bias for ffn if True
|
||||
drop_path_rate (float): stochastic depth rate
|
||||
drop_path_uniform (bool): apply uniform drop rate across blocks
|
||||
weight_init (str): weight init scheme
|
||||
init_values (float): layer-scale init values
|
||||
embed_layer (nn.Module): patch embedding layer
|
||||
act_layer (nn.Module): MLP activation layer
|
||||
block_fn (nn.Module): transformer block class
|
||||
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
||||
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
||||
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
||||
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
||||
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
||||
"""
|
||||
super().__init__()
|
||||
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
||||
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
self.num_tokens = 1
|
||||
self.n_blocks = depth
|
||||
self.num_heads = num_heads
|
||||
self.patch_size = patch_size
|
||||
self.num_register_tokens = num_register_tokens
|
||||
self.interpolate_antialias = interpolate_antialias
|
||||
self.interpolate_offset = interpolate_offset
|
||||
|
||||
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
||||
assert num_register_tokens >= 0
|
||||
self.register_tokens = (
|
||||
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
||||
)
|
||||
|
||||
if drop_path_uniform is True:
|
||||
dpr = [drop_path_rate] * depth
|
||||
else:
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
|
||||
if ffn_layer == "mlp":
|
||||
logger.info("using MLP layer as FFN")
|
||||
ffn_layer = Mlp
|
||||
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
||||
logger.info("using SwiGLU layer as FFN")
|
||||
ffn_layer = SwiGLUFFNFused
|
||||
elif ffn_layer == "identity":
|
||||
logger.info("using Identity layer as FFN")
|
||||
|
||||
def f(*args, **kwargs):
|
||||
return nn.Identity()
|
||||
|
||||
ffn_layer = f
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
blocks_list = [
|
||||
block_fn(
|
||||
dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
proj_bias=proj_bias,
|
||||
ffn_bias=ffn_bias,
|
||||
drop_path=dpr[i],
|
||||
norm_layer=norm_layer,
|
||||
act_layer=act_layer,
|
||||
ffn_layer=ffn_layer,
|
||||
init_values=init_values,
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
if block_chunks > 0:
|
||||
self.chunked_blocks = True
|
||||
chunked_blocks = []
|
||||
chunksize = depth // block_chunks
|
||||
for i in range(0, depth, chunksize):
|
||||
# this is to keep the block index consistent if we chunk the block list
|
||||
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
||||
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
||||
else:
|
||||
self.chunked_blocks = False
|
||||
self.blocks = nn.ModuleList(blocks_list)
|
||||
|
||||
self.norm = norm_layer(embed_dim)
|
||||
self.head = nn.Identity()
|
||||
|
||||
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
||||
|
||||
self.init_weights()
|
||||
|
||||
def init_weights(self):
|
||||
trunc_normal_(self.pos_embed, std=0.02)
|
||||
nn.init.normal_(self.cls_token, std=1e-6)
|
||||
if self.register_tokens is not None:
|
||||
nn.init.normal_(self.register_tokens, std=1e-6)
|
||||
named_apply(init_weights_vit_timm, self)
|
||||
|
||||
def interpolate_pos_encoding(self, x, w, h):
|
||||
previous_dtype = x.dtype
|
||||
npatch = x.shape[1] - 1
|
||||
N = self.pos_embed.shape[1] - 1
|
||||
if npatch == N and w == h:
|
||||
return self.pos_embed
|
||||
pos_embed = self.pos_embed.float()
|
||||
class_pos_embed = pos_embed[:, 0]
|
||||
patch_pos_embed = pos_embed[:, 1:]
|
||||
dim = x.shape[-1]
|
||||
w0 = w // self.patch_size
|
||||
h0 = h // self.patch_size
|
||||
# we add a small number to avoid floating point error in the interpolation
|
||||
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
||||
# DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
|
||||
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
||||
# w0, h0 = w0 + 0.1, h0 + 0.1
|
||||
|
||||
sqrt_N = math.sqrt(N)
|
||||
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
|
||||
patch_pos_embed = nn.functional.interpolate(
|
||||
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
|
||||
scale_factor=(sx, sy),
|
||||
# (int(w0), int(h0)), # to solve the upsampling shape issue
|
||||
mode="bicubic",
|
||||
antialias=self.interpolate_antialias
|
||||
)
|
||||
|
||||
assert int(w0) == patch_pos_embed.shape[-2]
|
||||
assert int(h0) == patch_pos_embed.shape[-1]
|
||||
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
||||
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
||||
|
||||
def prepare_tokens_with_masks(self, x, masks=None):
|
||||
B, nc, w, h = x.shape
|
||||
x = self.patch_embed(x)
|
||||
if masks is not None:
|
||||
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
||||
|
||||
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
||||
x = x + self.interpolate_pos_encoding(x, w, h)
|
||||
|
||||
if self.register_tokens is not None:
|
||||
x = torch.cat(
|
||||
(
|
||||
x[:, :1],
|
||||
self.register_tokens.expand(x.shape[0], -1, -1),
|
||||
x[:, 1:],
|
||||
),
|
||||
dim=1,
|
||||
)
|
||||
|
||||
return x
|
||||
|
||||
def forward_features_list(self, x_list, masks_list):
|
||||
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
all_x = x
|
||||
output = []
|
||||
for x, masks in zip(all_x, masks_list):
|
||||
x_norm = self.norm(x)
|
||||
output.append(
|
||||
{
|
||||
"x_norm_clstoken": x_norm[:, 0],
|
||||
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
||||
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
||||
"x_prenorm": x,
|
||||
"masks": masks,
|
||||
}
|
||||
)
|
||||
return output
|
||||
|
||||
def forward_features(self, x, masks=None):
|
||||
if isinstance(x, list):
|
||||
return self.forward_features_list(x, masks)
|
||||
|
||||
x = self.prepare_tokens_with_masks(x, masks)
|
||||
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x_norm = self.norm(x)
|
||||
return {
|
||||
"x_norm_clstoken": x_norm[:, 0],
|
||||
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
||||
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
||||
"x_prenorm": x,
|
||||
"masks": masks,
|
||||
}
|
||||
|
||||
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
||||
x = self.prepare_tokens_with_masks(x)
|
||||
# If n is an int, take the n last blocks. If it's a list, take them
|
||||
output, total_block_len = [], len(self.blocks)
|
||||
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
||||
for i, blk in enumerate(self.blocks):
|
||||
x = blk(x)
|
||||
if i in blocks_to_take:
|
||||
output.append(x)
|
||||
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
||||
return output
|
||||
|
||||
def _get_intermediate_layers_chunked(self, x, n=1):
|
||||
x = self.prepare_tokens_with_masks(x)
|
||||
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
||||
# If n is an int, take the n last blocks. If it's a list, take them
|
||||
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
||||
for block_chunk in self.blocks:
|
||||
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
||||
x = blk(x)
|
||||
if i in blocks_to_take:
|
||||
output.append(x)
|
||||
i += 1
|
||||
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
||||
return output
|
||||
|
||||
def get_intermediate_layers(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
||||
reshape: bool = False,
|
||||
return_class_token: bool = False,
|
||||
norm=True
|
||||
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
||||
if self.chunked_blocks:
|
||||
outputs = self._get_intermediate_layers_chunked(x, n)
|
||||
else:
|
||||
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
||||
if norm:
|
||||
outputs = [self.norm(out) for out in outputs]
|
||||
class_tokens = [out[:, 0] for out in outputs]
|
||||
outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
|
||||
if reshape:
|
||||
B, _, w, h = x.shape
|
||||
outputs = [
|
||||
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
||||
for out in outputs
|
||||
]
|
||||
if return_class_token:
|
||||
return tuple(zip(outputs, class_tokens))
|
||||
return tuple(outputs)
|
||||
|
||||
def forward(self, *args, is_training=False, **kwargs):
|
||||
ret = self.forward_features(*args, **kwargs)
|
||||
if is_training:
|
||||
return ret
|
||||
else:
|
||||
return self.head(ret["x_norm_clstoken"])
|
||||
|
||||
|
||||
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
||||
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
||||
if isinstance(module, nn.Linear):
|
||||
trunc_normal_(module.weight, std=0.02)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
|
||||
|
||||
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
||||
model = DinoVisionTransformer(
|
||||
patch_size=patch_size,
|
||||
embed_dim=384,
|
||||
depth=12,
|
||||
num_heads=6,
|
||||
mlp_ratio=4,
|
||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
||||
num_register_tokens=num_register_tokens,
|
||||
**kwargs,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
||||
model = DinoVisionTransformer(
|
||||
patch_size=patch_size,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
||||
num_register_tokens=num_register_tokens,
|
||||
**kwargs,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
||||
model = DinoVisionTransformer(
|
||||
patch_size=patch_size,
|
||||
embed_dim=1024,
|
||||
depth=24,
|
||||
num_heads=16,
|
||||
mlp_ratio=4,
|
||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
||||
num_register_tokens=num_register_tokens,
|
||||
**kwargs,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
||||
"""
|
||||
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
||||
"""
|
||||
model = DinoVisionTransformer(
|
||||
patch_size=patch_size,
|
||||
embed_dim=1536,
|
||||
depth=40,
|
||||
num_heads=24,
|
||||
mlp_ratio=4,
|
||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
||||
num_register_tokens=num_register_tokens,
|
||||
**kwargs,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def DINOv2(model_name):
|
||||
model_zoo = {
|
||||
"vits": vit_small,
|
||||
"vitb": vit_base,
|
||||
"vitl": vit_large,
|
||||
"vitg": vit_giant2
|
||||
}
|
||||
|
||||
return model_zoo[model_name](
|
||||
img_size=518,
|
||||
patch_size=14,
|
||||
init_values=1.0,
|
||||
ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
|
||||
block_chunks=0,
|
||||
num_register_tokens=0,
|
||||
interpolate_antialias=False,
|
||||
interpolate_offset=0.1
|
||||
)
|
||||
Reference in New Issue
Block a user